
6 Lovász local lemma Probabilistic Methods in Combinatorics — Yufei Zhao

6 Lovász local lemma

The Lovász local lemma (LLL), introduced in the paper of Erdős and Lovász (1975) is a
powerful tool in the probabilistic method. It is some form of interpolation between the
following two extreme (easy) scenerios

• Complete independence: if we have an arbitrary number of independent bad events,
each occurring with probability < 1, then it is possible to avoid all of them (although
with tiny probability)

• Union bound: if we have a collection of bad events whose total probability is < 1

(but usually much smaller), then it is possible to avoid all of them (often with high
probability)

The local lemma deals with the case when each bad event is independent with most other
bad events, but possibly dependent with a small number of other events.

We saw an application of the Lovász local lemma back in Section 1.1, where we used it
to lower bound Ramsey numbers. This chapter we will explore the local lemma and its
applications in depth.

6.1 Statement and proof

Here is the setup for the local lemma:

• We have “bad events” A1, A2, . . . , An

• For each i there is some subset N(i) ⊆ [n] such that Ai is independent from {Aj :

j /∈ N(i) ∪ {i}}.

Here we say that event A0 is independent from {A1, . . . , Am} if A0 is independent of
every event of the form B1 ∧ · · · ∧Bm where each Bi is either Ai or Ai, i.e.,

P(A0B1 · · ·Bm) = P(A0)P(B1 · · ·Bm),

or, equivalently, using Bayes’s rule: P(A0|B1 · · ·Bm) = P(A0). (Here ∧ = ‘and’ and ∨ =
‘or’, and we may omit ∧ symbols, similar to multiplication)

We can represent the above relations by a dependency (di)graph whose vertices are
indexed by the events (or equivalently V = [n]), and the (out-)neighbors of i are N(i).
(Mostly we’ll just work with undirected dependency graphs for simplicity, but in general
it may be helpful to think of them as directed—hence digraphs.)
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Remark 6.1.1 (Important!). Independence 6= pairwise independence
The dependency graph is not made by joining i ∼ j whenever Ai and Aj are not inde-
pendent (i.e., P(AiAj) 6= P(Ai)P(Aj)).

Example: suppose one picks x1, x2, x3 ∈ Z/2Z uniformly and independently at random
and set, for each i = 1, 2, 3 (indices taken mod 3), Ai the event that xi+1 +xi+2 = 0. Then
these events are pairwise independent but not independent. So the empty graph on three
vertices is not a valid dependency graph (on the other hand, having at least two edges
makes it a valid dependency graph).

A related note: there could be more than one choices for dependency graphs. So we speak
of “a dependency graph” instead of “the dependency graph.”

Remark 6.1.2 (Random variable model / hypergraph coloring). Many common
applications of the local lemma can be phrased in the following form:

• A collection of independent random variables x1, . . . , xN

• Each event Ai only depends on {xj : j ∈ Si} for some subset Si ⊆ [N ]

In this case, valid dependency graph can be formed by placing an edge i ∼ j whenever
Si ∩ Sj 6= ∅.

We can also view the above as coloring a hypergraph with vertices labeled by [N ], using
independent random colors x1, . . . , xN for each vertex, so that various constraints on edges
S1, S2, · · · ⊆ [N ] are satisfied.

An example of such a problem is the satisfiability problem (SAT): given a CNF
formula (conjunctive normal norm = and-of-or ’s), e.g.,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) ∧ · · ·

the problem is to find a satisfying assignment with boolean variables x1, x2, . . . . Many
problems in computer science can be modeled using this way.

The following formulation of the local lemma is easiest to apply and is the most commonly
used.

Theorem 6.1.3 (Lovász local lemma; symmetric form). Let A1, . . . , An be events, with
P[Ai] ≤ p for all i. Suppose that each Ai is independent from a set of all other Aj except
for at most d of them. If

ep(d+ 1) ≤ 1,

then with some positive probability, none of the events Ai occur.
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Remark 6.1.4. The constant e is best possible (Shearer 1985).

Theorem 6.1.5 (Lovász local lemma; general form). Let A1, . . . , An be events. For
each i ∈ [n], let N(i) be such that Ai is independent from {Aj : j /∈ {i} ∪ N(i)}. If
x1, . . . , xn ∈ [0, 1) satisfy

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n],

then with probability ≥
∏n

i=1(1− xi), none of the events Ai occur.

Proof that the general form implies the symmetric form. Set xi = 1/(d+ 1) < 1 for all i.
Then

xi
∏

j∈N(i)

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d
>

1

(d+ 1)e
≥ p

so the hypothesis of general local lemma holds.

Here is another corollary of the general form. It says that the local lemma works if the
total probability of any neighborhood in a dependency graph is small.

Corollary 6.1.6. In the setup of Theorem 6.1.5, if P(Ai) < 1/2 and
∑

j∈N(i) P(Aj) ≤ 1/4

for all i, then with positive probability none of the events Ai occur.

Proof. In Theorem 6.1.5, set xi = 2P(Ai) for each i. Then

xi
∏

j∈N(i)

(1− xj) ≥ xi

1−
∑
j∈N(i)

xj

 = 2P(Ai)

1−
∑
j∈N(i)

2P(Ai)

 ≥ P(Ai).

(The first inequality is by “union bound.”)

Proof of Lovász local lemma (general case). We will prove that

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ xi whenever i /∈ S ⊆ [n] (6.1)

Once (6.1) has been established, we then deduce that

P(A1 · · ·An) = P(A1)P
(
A2

∣∣ A1

)
P
(
A3

∣∣ A1A2

)
· · ·P

(
An
∣∣ A1 · · ·An−1

)
≥ (1− x1)(1− x2) · · · (1− xn),
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which is the conclusion of the local lemma.

Now we prove (6.1) by induction on |S|. The base case |S| = 0 is trivial.

Let i /∈ S. Let S1 = S ∩N(i) and S2 = S \ S1. We have

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
=

P
(
Ai
∧
j∈S1

Aj

∣∣∣ ∧j∈S2
Aj

)
P
(∧

j∈S1
Aj

∣∣∣ ∧j∈S2
Aj

) (6.2)

For the RHS of (6.2),

numerator ≤ P

(
Ai

∣∣∣∣∣ ∧
j∈S2

Aj

)
= P(Ai) ≤ xi

∏
j∈N(i)

(1− xi) (6.3)

and, writting S1 = {j1, . . . , jr},

denominator = P

(
Aj1

∣∣∣∣∣ ∧
j∈S2

Aj

)
P

(
Aj2

∣∣∣∣∣ Aj1 ∧
j∈S2

Aj

)
· · ·P

(
Ajr

∣∣∣∣∣ Aj1 · · ·Ajr−1

∧
j∈S2

Aj

)
≥ (1− xj1) · · · (1− xjr) [by induction hypothesis]

≥
∏

j∈N(i)

(1− xi)

Thus (6.2) ≤ xi, thereby finishing the induction proof of (6.1).

6.2 Algorithmic local lemma

The local lemma tells you that some good configuration exists, but the proof is non-
constructive. The probability that a random sample avoids all the bad events is often
very small (usually exponentially small, e.g., in the case of a set of independent bad
events). It had been an open problem for a long time whether there exists some efficient
algorithm to sample a good configuration in applications of the local lemma.

Moser (2009), during his PhD, achieved a breakthrough by coming up with the first
efficient algorithmic version of the local lemma. Later, in a beautiful paper by Moser and
Tardos (2010) extended the algorithm to a general framework for the local lemma.

The Moser–Tardos algorithm considers problems in the random variable model (Re-
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mark 6.1.2). The algorithm is surprisingly simple.

Algorithm: Moser–Tardos local lemma algorithm
Initialize all the random variables;
while there are violated events do

Pick an arbitrary violated event and resample its variables;

Theorem 6.2.1 (Moser and Tardos 2010). If there are x1, . . . , xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n],

then the above randomized algorithm resamples each Ai at most xi/(1 − xi) times in
expectation for each i.

Remark 6.2.2. The above theorem shows that the Moser–Tardos algorithm is an Las Vegas
algorithm with polynomial expected runtime. A Las Vegas algorithm is a randomized
algorithm that always terminates a successful result, but it might take a long time to
terminate. Contrast this to a Monte Carlo algorithm, which runs in bounded time but
may return a bad result with some small probability, and there may not be an efficient way
to check whether the output is correct–e.g., randomly 2-coloring the edges of Kn to avoid
a monochromatic 2 log2 n-clique. A Las Vegas algorithm can be converted into a Monte
Carlo algorithm by cutting off the algorithm after some time (significantly larger than
the expected running time) and applying Markov’s inequality to bound the probability of
failure. On the other hand, there is in general no way to convert a Monte Carlo algorithm
to a Las Vegas algorithm unless there is an efficient way to certify the correctness of the
output of the algorithm.

Remark 6.2.3. The Moser–Tardos algorithm assumes the random variable model. Some
assumption on the model is necessary since the problem can be computationally hard in
general.

For example, let q = 2k, and f : [q] → [q] be some fixed bijection. Let y ∈ [q] be given.
The goal is find x such that f(x) = y.

For each i ∈ [k], let Ai be the event that f(x) and y disagree on i-th bit. Then A1, . . . , Ak
independent (check!). Also, f(x) = y if and only if no event Ai occurs.

A trivial version of the local lemma (with empty dependency graph) guarantees the exis-
tence of some x such that f(x) = y.

However, finding x may be computationally hard for certain functions f . In fact, the
existence of such one-way functions (easy to compute but hard to invert) is the bedrock
of cryptography. A concrete example is f : Fq → Fq is given by f(0) = 0, and for x 6= 0, set
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f(x) = gx for some multiplicative generator. Then inverting f is the discrete logarithm
problem, which is believed to be computationally difficult.

6.3 Coloring hypergraphs

Previously, in Theorem 1.3.1, we saw that every k-uniform hypergraph with fewer than
2k−1 edges is 2-colorable. The next theorem gives a sufficient local condition for 2-
colorability.

Theorem 6.3.1. A k-uniform hypergraph is 2-colorable if every edge intersects at most
e−12k−1 − 1 other edges

Proof. For each edge f , let Af be the event that f is monochromatic. Then P(Af ) = p :=

2−k+1. Each Af is independent from all Af ′ where f ′ is disjoint from f . Since at most
d := e−12k−1− 1 edges intersect every edge, and e(d+ 1)p ≤ 1, so the local lemma implies
that with positive probability, none of the events Af occur.

Corollary 6.3.2. For k ≥ 9, every k-uniform k-regular hypergraph is 2-colorable. (Here
k-regular means that every vertex lies in exactly k edges)

Proof. Every edge intersects ≤ d = k(k − 1) other edges. And e(k(k − 1) + 1)2−k+1 < 1

for k ≥ 9.

Remark 6.3.3. The statement is false for k = 2 (triangle) and k = 3 (Fano plane) but
actually true for all k ≥ 4 (Thomassen 1992).

Here is an example where the asymmetric form of the local lemma is insufficient (why is
it insufficient? No bound on the the number of dependent events).

Theorem 6.3.4. Let H be a (non-uniform) hypergraph where every edge has size 3.
Suppose ∑

f∈E(H)\{e}:e∩f 6=

2−|f | ≤ 1

8
, for each edge e,

then H is 2-colorable.

Proof. Consider a uniform random 2-coloring of the vertices. Let Ae be the event that
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edge e is monochromatic. Then P(Ae) = 2−|e|+1 ≤ 1/4 since |e| ≥ 3. Also, also∑
f∈E(H)\{e}:e∩f 6=

P(Af ) =
∑

f∈E(H)\{e}:e∩f 6=

2−|f |+1 ≤ 1/4.

Thus by Corollary 6.1.6 one can avoid all events Ae, and hence H is 2-colorable.

Remark 6.3.5. A sign for when you should look beyond the symmetric local lemma is
when there are bad events of very different nature (in particular, they have very different
probabilities).

6.3.1 Compactness argument

Now we highlight an important compactness argument that allows us to deduce the
existence of an infinite object, even though the local lemma itself is only applicable to
finite systems.

Theorem 6.3.6. Let H be a (non-uniform) hypergraph on a possibly infinite vertex set,
such that each edges is finite, has at least k vertices, and intersect at most d other edges.
If e2−k+1(d+ 1) ≤ 1, then H has a proper 2-coloring.

Proof. From a vanilla application of the symmetric local lemma, we deduce that for any
finite subset X of vertices, there exists an 2-coloring X so that no edge contained in X is
monochromatic (color each vertex iid uniformly, and consider the bad event Ae that the
edge e ⊂ X is monochromatic).

Next we extend the coloring to the entire vertex set V by a compactness argument. The
set of all colorings is [2]V . By Tikhonov’s theorem (which says a product of a possibly
infinite collection of compact topological spaces is compact), [2]V is compact under the
product topology (so that open subsets are those defined by restriction to a finite set of
coordinates).

For each finite subset X, let CX ⊂ [2]V be the subset of colorings where no edge contained
in X is monochromatic. Earlier from the local lemma we saw that CX 6=. Furthermore,

CX1 ∩ · · · ∩ CX` ⊇ CX1∪···∪X` ,

so {CX : |X| < ∞} is a collection of closed subsets of [2]V with the finite intersection
property. Hence by compactness of [2]V , we have

⋂
X⊂V :|X|<∞ 6= ∅, and observe that any

element of this intersection is a valid coloring of the hypergraph.

Note that we may have P[
∧
iAi] = 0 while

∧
iAi 6= ∅.
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The same compactness argument tell us that: in the random variable model (Re-
mark 6.1.2), if it is possible to avoid every finite subset of bad events, then it is
possible to avoid all bad events simultaneously. (Again, one needs to be working
in the random variable model for the compactness argument to work.

The next application appears in the paper of Erdős and Lovász (1975) where the local
lemma originally appears.

Consider k-coloring the real numbers, i.e., a function c : R → [k]. We say that T ⊂ R is
multicolored with respect to c if all k colors appear in T

Question 6.3.7. For each k is there an m so that for every S ⊂ R with |S| = m, one
can k-color R so that every translate of S is multicolored?

The following theorem shows that this can be done whenever m > (3 + ε)k log k (and
k > k0(ε) sufficiently large).

Theorem 6.3.8. The answer to the above equation is yes if

e(m(m− 1) + 1)k

(
1− 1

k

)m
≤ 1.

Proof. By the compactness argument, it suffices to check the result for every finite X ⊂ R.

Each translate of S is not multicolored with probability p ≤ k(1 − 1/k)m, and each
translate of S intersects at most m(m − 1) other translates. Consider a bad event for
each translate of S contained in X, and conclude by the symmetric version of the local
lemma.

6.4 Decomposing coverings

We say that a collection of disks in Rd is a covering is their union is Rd. We say that it is
a k-fold covering if every point of Rd is contained in at least k disks (so 1-fold covering
is the same as a covering).

We say that a k-fold covering is decomposable if it can be partitioned into two coverings.

In Rd, is a every k-fold covering by unit balls decomposable if k is sufficiently large?

A fun exercise: in R1, every k-fold covering by intervals can be partitioned into k coverings.

Mani-Levitska and Pach (1986) showed that every 33-fold covering of R2 is decomposable.

What about higher dimensions?
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Surprising, they also showed that for every k, there exists a k-fold indecomposable covering
of R3 (and similarly for Rd for d ≥ 3).

However, it turns out that indecomposable coverings must cover the space quite unevenly:

Theorem 6.4.1 (Mani-Levitska and Pach 1986). Every k-fold nondecomposable covering
of R3 by open unit balls must cover some point & 2k/3 times.

Remark 6.4.2. In Rd, the same proof gives ≥ cd2
k/d.

We will need the following combinatorial geometric fact:

Lemma 6.4.3. A set of n ≥ 2 spheres in R3 cut R3 into at most n3 connected components.

Proof. Let us first consider the problem in one dimension lower. Let f(m) be the max-
imum number of connected regions that m circles on a sphere in R3 can cut the sphere
into.

We have f(m + 1) ≤ f(m) + 2m for all m ≥ 1 since adding a new circle to a set of m
circles creates at most 2m intersection points, so that the new circle is divided into at
most 2m arcs, and hence its addition creates at most 2m new regions.

Combined with f(1) = 2, we deduce f(m) ≤ m(m− 1) + 2 for all m ≥ 1.

Now let g(m) be the maximum number of connected regions that m spheres in R3 can cut
R3 into. We have g(1) = 2, and g(m + 1) ≤ g(m) + f(m) ≤ g(m) by a similar argument
as earlier. So g(m) ≤ f(m− 1) + f(m− 2) + · · ·+ f(1) + g(0) ≤ m3.

Proof. Suppose for contradiction that every point in R3 is covered by at most t ≤ c2k/3

unit balls from F (for some sufficiently small c that we will pick later).

Construct an infinite hypergraph H with vertex set being the set of balls and edges having
the form Ex = {balls containing x} for some x ∈ R3. Note that |Ex| ≥ k since we have a
k-fold covering.

Claim: every edge of intersects at most d = O(t3) other edges

Proof of claim: Let x ∈ R3. If Ex ∩ Ey 6= ∅, then |x − y| ≤ 2, so all the balls in Ey
lie in the radius-4 ball centered at x. The volume of the radius-4 ball is 43 times the
unit ball. Since every point lies in at most t balls, there are at most 43t balls appearing
among those Ey intersecting x, and these balls cut the radius-2 centered at x into O(t3)

connected regions by the earlier lemma, and two different y’s in the same region produce
the same Ey. So Ex intersects O(t3) other edges. �

With c sufficiently small, we have e2−k+1(d + 1) ≤ 1. It then follows by Theorem 6.3.6
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(local lemma + compactness argument) that this hypergraph is 2-colorable, which corre-
sponds to a decomposition of the covering, a contradiction.

6.5 Large independent sets

Every graph with maximum degree ∆ contains an independent set of size ≥ |V |/(∆ + 1)

(choose the independent set greedily). The following lemma shows that by decreasing
the desired size of the independent set by a constant factor, we can guarantee a certain
structure on the independent set.

Theorem 6.5.1. Let G = (V,E) be a graph with maximum degree ∆ and let V =

V1 ∪ · · · ∪ Vr be a partition, where each |Vi| ≥ 2e∆. Then there is an independent set in
G containing one vertex from each Vi.

This example is instructive because it is not immediately obvious what to choose as bad
events (even if you are already told to apply the local lemma).

We may assume that |Vi| = k := d2e∆e for each i, or else we can remove some vertices
from Vi.

Pick vi ∈ Vi uniformly at random, independently for each i.

What do we choose as bad events A•? It turns out that some choices work better than
others.

Attempt 1:
Ai,j = {vi ∼ vj} for each 1 ≤ i < j ≤ r where there is an edge between Vi and Vj
P(Ai,j) ≤ ∆/k

Dependency graph: Ai,j ∼ Ak,` if {i, j} ∩ {k, `} 6= ∅. Max degree ≤ 2∆k (starting from
(i, j), look at the neighbors of all vertices in Vi∪Vj). The max degree is too large compared
to the bad event probabilities.

Attempt 2:
Ae = {both endpoints of e are chosen} for each e ∈ E
P(Ae) = 1/k2

Dependency graph: Ae ∼ Af if some Vi intersects both e and f . Max degree ≤ 2k∆ (if e
is between Vi and Vj, then f must be incident to Vi ∪ Vj).
We have e(1/k2)(2k∆ + 1) ≤ 1, so the local lemma implies the with probability no bad
event occurs, and hence {v1, . . . , vr} is an independent set.
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6.6 Directed cycles of length divisible by k

Theorem 6.6.1 (Alon and Linial 1989). For every k there exists d so that every d-regular
directed graph has a directed cycle of length divisible by k.

(d-regular means in-degree and out-degree of every vertex is d)

Corollary 6.6.2. For every k there exists d so that every 2d-regular graph has a cycle of
length divisible by k.

Proof. Every 2d-regular graph can be made into a d-regular digraph by orientating its
edges according to an Eulerian tour. And then we can apply the previous theorem.

More generally they proved:

Theorem 6.6.3 (Alon and Linial 1989). Every directed graph with min out-degree δ and
max in-degree ∆ contains a cycle of length divisible by k ∈ N as long as

k ≤ δ

1 + log(1 + δ∆)
.

Proof. By deleting edges, can assume that every every vertex has out-degree exactly δ.

Assign every vertex v an element xv ∈ Z/kZ iid uniformly at random.

We will look for directed cycles where the labels increase by 1 (mod k) at each step.
These cycles all have length divisible by k.

For each vertex v, let Av be the event that there is nowhere to go from v (i.e., if no
outneighbor is labeled xv + 1 (mod k)). We have

P(Av) = (1− 1/k)δ ≤ e−δ/k.

The following is a valid dependency graph, noting that Av only depends on {xw : w ∈
{v} ∪ N+(v)}, where N+(v) denotes the out-neighbors of v and N−(v) the in-neighbors
of v:

Av ∼ Aw if {v} ∪N+(v) intersects {w} ∪N+(w).

The maximum degree in the dependency graph is at most ∆ + δ∆ (starting from v, there
are (1) at most ∆ choices stepping backward (2) δ choices stepping forward, and (3) at
most δ(∆−1) choices stepping forward and then backward to land somewhere other than
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v). So an application of the local lemma shows that, as long as e1−δ/k(1 + ∆ + δ∆), i.e.,

k ≤ δ/(1 + log(1 + ∆ + δ∆)),

then we are done. This is almost, but not quite the result (though, for most application,
we would be perfectly happy with such a bound).

The final trick is to notice that we actually have an even smaller dependency digraph:

Av is independent of all Aw where N+(v) is disjoint from N+(w) ∪ {w}.

Indeed, even if we fix the colors of all vertices outside N+(v), the conditional probability
that Av is still (1− 1/k)δ.

The number of w such that N+(v) intersects N+(w)∪{w} is at most δ∆ (no longer need
to consider (1) in the previous count). And we have

ep(δ∆ + 1) ≤ e1−δ/k(δ∆ + 1) ≤ 1.

So we are done by the local lemma.

6.7 Lopsided local lemma

In the dependency graph, intuitively, the neighbors of Ai consists of all the events depen-
dent on Ai (again, same warning as earlier: it is insufficient to simply check for pairwise
dependence). However, if the there is a positive dependence among the bad events—
avoiding some bad events make it easier to avoid others—then perhaps it would actually
make it easier to avoid all bad events. For example, in an extreme scenario, if several bad
events are identical, so that they are perfectly positively correlated, then it is much easier
to avoid them compared to avoiding independent bad events. In the opposite extreme,
if several bad events are disjoint, then it would be harder to avoid all of them. Thus,
intuitively, it seems reasonable that in the local lemma, we are primarily concerned about
negative dependencies and but not positive dependencies among bad events.

We can make this notion precise by re-examining the proof of the local lemma. Where
did we actually use the independence assumption in the hypothesis of the local lemma?
It was in the following step, Equation (6.3):

numerator ≤ P

(
Ai

∣∣∣∣∣ ∧
j∈S2

Aj

)
= P(Ai) ≤ xi

∏
j∈N(i)

(1− xi).

If we had changed the middle = to ≤, the whole proof would remain valid. This observa-
tion allows us to weaken the independence assumption. Therefore we have the following
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theorem.

Theorem 6.7.1 (Lopsided local lemma — Erdős and Spencer 1991). Let A1, . . . , An be
events. For each i, let N(i) ⊂ [n] be such that

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ P(Ai) ∀i ∈ [n] and S ⊆ [n] \ (N(i) ∪ {i}) (6.4)

Suppose there exist x1, . . . , xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n].

Then with probability ≥
∏n

i=1(1− xi) none of the event Ai occur.

Like earlier, we also have a symmetric version that is easier to apply.

Corollary 6.7.2 (Lopsided local lemma; symmetric version). In the previous theorem,
if |N(i)| ≤ d and P(Ai) ≤ p for every i ∈ [n], and ep(d + 1) ≤ 1, then with positive
probability none of the events Ai occur.

The (di)graph where N(i) is the set of (out-)neighbors of i is called a negative depen-
dency (di)graph. Erdős and Spencer called it the lopsidependency graph, though I
prefer “negative dependency graph” since it is more descriptive.
Remark 6.7.3. Here are several equivalent formulations of (6.4): for every i ∈ [n] and
S ⊆ [n] \ (N(i) ∪ {i}),

• P
(
Ai

∣∣∣ ∧j∈S Aj

)
≥ P(Ai)

• P
(
Ai
∧
j∈S Aj

)
≤ P(Ai)P

(∧
j∈S Aj

)
To put in words, each event is non-negatively dependent on its non-neighbors.

It may be slightly strange to think about at first, but to verify the validity of a nega-
tive dependency graph, we are actually checking nonnegative dependencies (against non-
neighbors). Likewise, earlier, to verify a dependency graph, we need to check independence
against non-neighbors.
Remark 6.7.4. From the proof of Theorem 6.7.1, we see that we can weaken the negative
dependency hypothesis to

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ xi

∏
j∈N(i)

(1− xj) ∀i and S ⊆ [n] \N(i).
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Though negative dependency is often easier to argue.

6.7.1 Random permutations and positive dependencies

Just like how most applications of the local lemma can be cast in terms of the the random
variable model, which makes it easy to produce a valid dependency graph (by looking at
shared random variables), a natural setting for applications of the lopsided local lemma
is that of random permutations (and, by extending the domain, also random injections).

Here is a model problem: what is the probability that a random permutation π of [n] has
no fixed points? (Such permutations are called “derangements”)

This problem can be solved exactly: using inclusion-exclusion, one can deduce that prob-
ability to be

∑n
i=0(−1)i/i! = e−1 + o(1). Suppose that we did not know this answer.

Let Ai be the event that π(i) = i. It is easy to see that P(Ai) = 1/n. If the events
A1, . . . , An were independent, then we would deduce that with probability (1 − 1/n)n =

1/e+ o(1) none of the Ai occur. But these events are not independent.

Intuitively, these events are positively dependent: having some fixed points makes it likes
to see other fixed points. The next theorem makes this rigorous, so that we can deduce
P(A1 . . . An) ≥ P(A1) · · ·P(An) = (1 − 1/n)n = 1/e − o(1), a lower bound that matches
the truth.

It may be easier to visualize permutations as perfect matchings in the complete bipartite
graph Kn,n. We will use these two interpretations interchangeably.

Theorem 6.7.5 (Positive dependence for random perfect matchings). LetM be a perfect
matching of Kn,n chosen uniformly at random. For each matching F , let AF denote the
event that F ⊆M .
Let F0, F1, . . . , Fk be matchings such that no edge of F0 shares a vertex with any edge
from F1 ∪ · · · ∪ Fk. Then

P
(
AF0

∣∣ AF1 · · ·AFk
)
≤ P(AF0).

In other words, if F is a set of matchings in Kn,n, then the following if a valid negative
dependency graph on the events {AF : F ∈ F}: AF1 ∼ AF2 if F1 and F2 touch (i.e., some
two edges coincide or share an endpoint).

Proof. By relabeling, we may assume that the edges of F0 are (1, 1), (2, 2), . . . , (t, t).

For each injection τ : [t]→ [n] (also viewed as a matching with edges (1, τ(1)), . . . , (t, τ(t))),
letMτ denote the set of perfect matchings in Kn,n containing τ but not containing any
of F1, . . . , Fk.
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Let τ0 : [t] → [n] be the map sending i to i (i.e., the matching F0). Then the LHS and
RHS of the desired inequality P

(
AF0

∣∣ AF1 · · ·AFk
)
≤ P(AF0) can be rewritten as

|Mτ0|∑
τ |Mτ |

≤ 1

n(n− 1) · · · (n− t+ 1)
,

where the sum is taken over all n(n − 1) · · · (n − t + 1) injections τ : [t] → [n]. Thus it
suffices to prove that

|Mτ0| ≤ |Mτ | for every injection τ : [t]→ [n].

To show this inequality, we construct an injectionMτ0 →Mτ . Intuitively, this injection is
obtained by permuting some of the vertices on the right-half of Kn,n so that the matching
τ0 to taken to τ . Let us illustrate this idea in a simple case when τ(i) = t + i for each
i ∈ [t]: we constructMτ0 →Mτ by swapping, in Kn,n, the i-th vertex on the right-half
with the (t+ i)-th vertex on the right-half, for each i ∈ [n].

More generally, extend τ : [t]→ [n] to a permutation σ on [n] sending τ([t])\[t] to [t]\τ([t])

and otherwise leaving [n] \ ([t] ∪ τ([t])) fixed as identity.

Then σ acts on the set of matchings in Kn,n by permuting the right-endpoints. In partic-
ular, σ sends τ0 to τ . Also σ permutes the set of perfect matchings of Kn,n.

It remains to show that if M ∈ Mτ0 , then its image σM lies in Mτ . By construction
τ ⊂ σM . Suppose Fi ⊂ σM for some i ∈ [k]. Since Fi does not share any vertex with
F0, all the left-endpoints in Fi lie in [n] \ [t]. Since (i, τ(i)) is an edge of σM , all the
right-endpoints in Fi lie in [n] \ ([t] ∪ τ([t])). It follows that τFi = Fi, so that Fi ⊂ M ,
which contradicts M ∈Mτ0 .

Thus σ induces an injection fromMτ0 toMτ .

6.7.2 Latin square transversals

A Latin square of order n is an n× n array filled with n symbols so that every symbol
appears exactly once in every row and column. Example:

1 2 3
2 3 1
3 1 2

(Name origin: The name Latin square was inspired by mathematical papers by Leonhard
Euler (1707–1783), who used Latin characters as symbols)

Given an n×n array, a transversal is a set of n entries with one in every row and column.
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A Latin transversal is a transversal with distinct entries. Example:

1 2 3
2 3 1
3 1 2

Here is a famous open conjecture about Latin transversals. (Can you see why “odd” is
necessary?)

Conjecture 6.7.6. Every odd order Latin square has a transversal.

The next result is the original application of the lopsided local lemma.

Theorem 6.7.7 (Erdős and Spencer 1991). Every n×n array where every entry appears
at most n/(4e) times has a Latin transversal.

Proof. Let (mij) be the array. Pick a transversal uniformly at random. For each pair
of equal entries mij = mkl in the array in distinct rows and distinct columns, consider
the event Aijkl = Aklij that the transversal contains both locations (i, j) and (k, l). Then
P(Aijkl) = 1/(n(n − 1)). (By reinterpreting in the earlier language of matchings, Aijkl
is the event that the random perfect matchings contains the two edges (i, j) and (k, l),
which are assigned identical edge-labels.)

By the earlier theorem, the following is a negative dependency graph: two pairs of entries
are adjacent if they share some row or column, i.e., Aijkl ∼ Ai′j′k′l′ unless |{i, k, i′, k′}| =
|{j, l, j′, l′}| = 4.

Let us count neighbors in this negative dependency graph. Given Aijkl, there are at most
4n−4 additional locations (x, y) that share a column or row with either of the two chosen
entries (i, j) and (k, l). Once we have chosen (x, y), there are at most n/(4e)−1 choices for
another (z, w) with mxy = mzw. Thus the maximum degree in this negative dependence
graph is at most (4n−4)

(
n
4e
− 1
)
≤ n(n−1)

e
−1. We can now apply the symmetric lopsided

local lemma to conclude that with positive probability, none of the events Aijkl occur.
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