
3 Alterations Probabilistic Methods in Combinatorics — Yufei Zhao

3 Alterations

3.1 Ramsey numbers

Recall from Section 1.1:

R(s, t) = smallest n such that every red/blue edge coloring of Kn contains a red Ks or a
blue Kt

Using the basic method (union bounds), we deduce

Theorem 3.1.1. If there exists p ∈ [0, 1] with(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2) < 1

then R(s, t) > n.

Proof sketch. Color edge red with prob p and blue with prob 1 − p. LHS upper bounds
the probability of a red Ks or a blue Kt.

Using the alteration method, we deduce

Theorem 3.1.2. For all p ∈ [0, 1] and n,

R(s, t) > n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2)

Proof sketch. Color edge red with prob p and blue with prob 1−p remove one vertex from
each red Ks or blue Kt. RHS lower bounds the expected number remaining vertices.

3.2 Dominating set in graphs

In a graph G = (V,E), we say that U ⊂ V is dominating if every vertex in V \ U has a
neighbor in U .

Theorem 3.2.1. Every graph on n vertices with minimum degree δ > 1 has a dominating
set of size at most

(
log(δ+1)+1

δ+1

)
n.

Naive attempt: take out vertices greedily. The first vertex eliminates 1 + δ vertices, but
subsequent vertices eliminate possibly fewer vertices.
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Proof. Two-step process (alteration method):
1. Choose a random subset
2. Add enough vertices to make it dominating

Let p ∈ [0, 1] to be decided later. Let X be a random subset of V where every vertex is
included with probability p independently.

Let Y = V \ (X ∪N(X)). Each v ∈ V lies in Y with probability ≤ (1− p)1+δ.

Then X ∪ Y is dominating, and

E[|X ∪ Y |] = E[|X|] + E[|Y |] ≤ pn+ (1− p)1+δn ≤ (p+ e−p(1+δ))n

using 1 + x ≤ ex for all x ∈ R. Finally, setting p = log(δ+1)
δ+1

to minimize p + e−p(1+δ), we
bound the above expression by

≤
(

1 + log(δ + 1)

δ + 1

)
.

3.3 Heilbronn triangle problem

Question 3.3.1. How can one place n points in the unit square so that no three points
forms a triangle with small area?

Let
∆(n) = sup

S⊂[0,1]2

|S|=n

min
p,q,r∈S
distinct

area(pqr)

Naive constructions fair poorly. E.g., n points around a circle has a triangle of area
Θ(1/n3) (the triangle formed by three consectutive points has side lengths � 1/n and
angle θ = (1 − 1/n)2π). Even worse is arranging points on a grid, as you would get
triangles of zero area.

Heilbronn conjectured that ∆(n) = O(n−2).

Komlós, Pintz, and Szemerédi (1982) disproved the conjecture, showing ∆(n) & n−2 log n.
They used an elaborate probabilistic construction. Here we show a much simpler version
probabilistic construction that gives a weaker bound ∆(n) & n−2.
Remark 3.3.2. The currently best upper bound known is ∆(n) ≤ n−8/7+o(1) (Komlós,
Pintz, and Szemerédi 1981)

Theorem 3.3.3. For every positive integer n, there exists a set of n points in [0, 1]2 such
that every triple spans a triangle of area ≥ cn−2, for some absolute constant c > 0.
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Proof. Choose 2n points at random. For every three random points p, q, r, let us estimate

Pp,q,r(area(p, q, r) ≤ ε).

By considering the area of a circular annulus around p, with inner and outer radii x and
x+ ∆x, we find

Pp,q(|pq| ∈ [x, x+ ∆x]) ≤ π((x+ ∆x)2 − x2)

So the probability density function satisfies

Pp,q(|pq| ∈ [x, x+ dx]) ≤ 2πxdx

For fixed p, q

Pr(area(pqr) ≤ ε) = Pr
(
dist(pq, r) ≤ 2ε

|pq|

)
.

ε

|pq|
Thus, with p, q, r at random

Pp,q,r(area(pqr) ≤ ε) .
∫ √2

0

2πx
ε

x
dx � ε.

Given these 2n random points, let X be the number of triangles with area ≤ ε. Then
EX = O(εn3).

Choose ε = c/n2 with c > 0 small enough so that EX ≤ n.

Delete a point from each triangle with area ≤ ε.

The expected number of remaining points is E[2n −X] ≥ n, and no triangles with area
≤ ε = c/n2.

Thus with positive probability, we end up with ≥ n points and no triangle with area
≤ c/n2.

Algebraic construction. Here is another construction due to Erdős (in appendix of
Roth (1951)) also giving ∆(n) & n−2:

Let p be a prime. The set {(x, x2) ∈ F2
p : x ∈ Fp} has no 3 points collinear (a parabola

meets every line in ≤ 2 points). Take the corresponding set of p points in [p]2 ⊂ Z2. Then
every triangle has area ≥ 1/2 due to Pick’s theorem. Scale back down to a unit square.
(If n is not a prime, then use that there is a prime between n and 2n.)
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3.4 Markov’s inequality

We note an important tool that will be used next.

Markov’s inequality. Let X ≥ 0 be random variable. Then for every a > 0,

P(X ≥ a) ≤ E[X]

a
.

Proof. E[X] ≥ E[X1X≥a] ≥ E[a1X≥a] = aP(X ≥ a)

Take-home message: for r.v. X ≥ 0, if EX is very small, then typically X is small.

3.5 High girth and high chromatic number

If a graph has a k-clique, then you know that its chromatic number is at least k.

Conversely, if a graph has high chromatic number, is it always possible to certify this fact
from some “local information”?

Surprisingly, the answer is no. The following ingenious construction shows that a graph
can be “locally tree-like” while still having high chromatic number.

The girth of a graph is the length of its shortest cycle.

Theorem 3.5.1 (Erdős 1959). For all k, `, there exists a graph with girth > ` and
chromatic number > k.

Proof. Let G ∼ G(n, p) with p = (log n)2/n (the proof works whenever log n/n � p �
n−1+1/`). Here G(n, p) is Erdős–Rényi random graph (n vertices, every edge appearing
with probability p independently).

Let X be the number of cycles of length at most ` in G. By linearity of expectations, as
there are exactly

(
n
i

)
(i− 1)!/2 cycles of length i in Kn for each 3 ≤ i ≤ n, we have (recall

that ` is a constant)

EX =
∑̀
i=3

(
n

i

)
(i− 1)!

2
pi ≤

∑̀
i=3

nipi = o(n).

By Markov’s inequality

P(X ≥ n/2) ≤ EX
n/2

= o(1).
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(This allows us to get rid of all short cycles.)

How can we lower bound the chromatic number χ(·)? Note that χ(G) ≥ |V (G)|/α(G),
where α(G) is the independence number (the size of the largest independent set).

With x = (3/p) log n,

P(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) < nxe−px(x−1)/2 = (ne−p(x−1)/2)x = o(1).

Let n be large enough so that P(X ≥ n/2) < 1/2 and P(α(G) ≥ x) < 1/2. Then there is
some G with fewer than n/2 cycles of length ≤ ` and with α(G) ≤ (3/p) log n.

Remove a vertex from each cycle to get G′. Then |V (G′)| ≥ n/2, girth > `, and α(G′) ≤
α(G) ≤ (3/p) log n, so

χ(G′) ≥ |V (G′)|
α(G′)

≥ np

6 log n
=

log n

6
> k

if n is sufficiently large.

Remark 3.5.2. Erdős (1962) also showed that in fact one needs to see at least a linear
number of vertices to deduce high chromatic number: for all k, there exists ε = εk such
that for all sufficiently large n there exists an n-vertex graph with chromatic number > k

but every subgraph on bεnc vertices is 3-colorable. (In fact, one can take G ∼ G(n,C/n);
see "Probabilistic Lens: Local coloring" in Alon–Spencer)

3.6 Greedy random coloring

Recall m(k) is the minimum number of edges in a k-uniform hypergraph that is not
2-colorable.

Earlier we proved that m(k) ≥ 2k−1. Indeed, given a k-graph with < 2k−1 edges, by
randomly coloring the vertices, the expected number of monochromatic numbers is < 1.

We also proved an upper bound m(k) = O(k22k) by taking a random k-uniform hyper-
graph on k2 vertices.

Here is the currently best known lower bound.

Theorem 3.6.1 (Radhakrishnan and Srinivasan (2000)). m(k) &
√

k
log k

2k

Here we present a simpler proof, based on a random greedy coloring, due to Cherkashin
and Kozik (2015), following an approach of Pluhaár (2009).
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Proof. Suppose H is a k-graph with m edges.

Map V (H)→ [0, 1] uniformly at random.

Color vertices greedily from left to right: color a vertex blue unless it would create a
monochromatic edge, in which case color it red (i.e., every red vertex is the final vertex
in an edge with all earlier k − 1 vertices have been colored blue).

The resulting coloring has no all-blue edges. What is the probability of seeing a red edge?

If there is a red edge, then there must be two edges e, f so that the last vertex of e is the
first vertex of f . Call such pair (e, f) conflicting.

Want to bound probability of seeing a conflicting pair in a random V (H)→ [0, 1].

Here is an attempt (an earlier weaker result due to Pluhaár (2009)). Each pair of edges
with exactly one vertex in common conflicts with probability (k−1)!2

(2k−1)!
= 1

2k−1

(
2k−2
k−1

)−1 �
k−1/22−2k; union bounding over < m2 pairs of edges, the probability of of getting a
conflicting edge is . m2k−1/22−2k, which is < 1 for some m � k1/42k.

We’d like to do better by more carefully analyzing conflicting edges. Continuing . . .

Write [0, 1] = L ∪M ∪R where (p to be decided)

L :=

[
0,

1− p
2

)
M :=

[
1− p

2
,
1 + p

2

]
R :=

(
1 + p

2
, 1

]
.

The probability that a given edge lands entirely in L is (1−p
2

)k, and likewise with R

So probability that some edge of H is entirely contained in L or contained in R is ≤
2m(1−p

2
)k.

Suppose that no edge of H lies entirely in L or entirely in R. If (e, f) conflicts, then their
unique common vertex xv ∈ e ∩ f must lie in M . So the probability that (e, f) conflicts
is (here we use x(1− x) ≤ 1/4)

∫ (1+p)/2

(1−p)/2
xk−1(1− x)k−1 dx ≤ p4−k+1.

Thus the probability of seeing any conflicting pair is

≤ 2m

(
1− p

2

)k
+m2p4−k+1 < 2−k+1me−pk + (2−k+1m)2p.

Set p = log(2−k+2k/m)/k, we find that the above probability is < 1 for m = c2k
√
k/ log k,

with c > 0 being a sufficiently small constant.
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