
1 Introduction Probabilistic Methods in Combinatorics — Yufei Zhao

Figure 1: Paul Erdős (1913–1996) is considered the father of the probabilistic method.
He published around 1,500 papers during his lifetime, and had more than 500 collabora-
tors. To learn more about Erdős, see his biography The man who loved only numbers by
Hoffman and the documentary N is a number .

1 Introduction

Probabilistic method: to prove that an object exists, show that a random construction
works with positive probability

Tackle combinatorics problems by introducing randomness

Theorem 1.0.1. Every graph G = (V,E) contains a bipartite subgraph with at least
|E| /2 edges.

Proof. Randomly color every vertex of G with black or white, iid uniform

Let E ′ = edges with one end black and one end white

Then (V,E ′) is a bipartite subgraph of G

Every edge belongs to E ′ with probability 1
2
, so by linearity of expectation, E[|E ′|] = 1

2
|E|.

Thus there is some coloring with |E ′| ≥ 1
2
|E|, giving the desired bipartite subgraph.

1.1 Lower bounds to Ramsey numbers

Ramsey number R(k, `) = smallest n such that in every red-blue edge coloring of Kn,
there exists a red Kk or a blue K`.

e.g., R(3, 3) = 6

Ramsey (1929) proved that R(k, `) exists and is finite
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Figure 2: Frank Ramsey (1903–1930) wrote seminal papers in philosophy, economics, and
mathematical logic, before his untimely death at the age of 26 from liver problems. See a
recent profile of him in the New Yorker.

1.1.1 Erdős’ original proof

The probabilistic method started with:
P. Erdős, Some remarks on the theory of graphs, BAMS, 1947

Remark 1.1.1 (Hungarian names). Typing “Erdős” in LATEX: Erd\H{o}s and not Erd\"os

Hungarian pronunciations: s = /sh/ and sz = /s/, e.g., Erdős, Szekeres, Lovász

Theorem 1.1.2 (Erdős 1947). If
(
n
k

)
21−(k2) < 1, then R(k, k) > n. In other words, there

exist a red-blue edge-coloring of Kn without a monochromatic Kk.

Proof. Color edges uniformly at random

For every fixed subset R of k vertices, let AR denote the event that R induces a monochro-
matic Kk. Then P(AR) = 21−(k2).

P(there exists a monochromatic Kk) = P

 ⋃
R∈([n]

k )

AR

 ≤ ∑
R∈([n]

k )

P(AR) =

(
n

k

)
21−(k2) < 1.

Thus, with positive probability, the random coloring gives no monochromatic Kk.

Remark 1.1.3. By optimizing n (using Stirling’s formula) above, we obtain

R(k, k) >

(
1

e
√

2
+ o(1)

)
k2k/2

Can be alternatively phrased as counting: of all 2(n2) possible colorings, not all are bad
(this was how the argument was phrased in the original Erdős 1947 paper.

In this course, we almost always only consider finite probability spaces. While in principle
the finite probability arguments can be rephrased as counting, but some of the later more
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involved arguments are impractical without a probabilistic perspective.

Constructive lower bounds? Algorithmic? Open! “Finding hay in a haystack”

Remark 1.1.4 (Ramsey number upper bounds). Erdős–Szekeres (1935):

R(k + 1, `+ 1) ≤
(
k + `

k

)
.

Recent improvements by Conlon (2009), and most recently Sah (2020+):

R(k + 1, k + 1) ≤ e−c(log k)2
(

2k

k

)
.

All these bounds have the form R(k, k) ≤ (4+o(1))k. It is a major open problem whether
R(k, k) ≤ (4− c)k is true for some constant c > 0 and all sufficiently large k.

1.1.2 Alteration method

Two steps: (1) randomly color (2) get rid of bad parts

Theorem 1.1.5. For any k, n, we have R(k, k) > n−
(
n

k

)
21−(k2).

Proof. Construct in two steps:
(1) Randomly 2-color the edges of Kn

(2) Delete a vertex from every monochromatic Kk

Final graph has no monochromatic Kk

After step (1), every fixed Kk is monochromatic with probability 21−(k2), let X be the
number of monochromatic Kk’s. EX =

(
n
k

)
21−(k2).

We delete at most |X| vertices in step (2). Thus final graph has size ≥ n − |X|, which
has expectation n−

(
n
k

)
21−(k2).

Thus with positive probability, the remaining graph has size at least n −
(
n
k

)
21−(k2) (and

no monochromatic Kk by construction)

Remark 1.1.6. By optimizing the choice of n in the theorem, we obtain

R(k, k) >

(
1

e
+ o(1)

)
k2k/2,

which improves the previous bound by a constant factor of
√

2.
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1.1.3 Lovász local lemma

We give one more improvement to the lower bound, using the Lovász local lemma, which
we will prove later in the course

Consider “bad events” E1, . . . , En. We want to avoid all.

If all P(Ei) small, say
∑

i P(Ei) < 1, then can avoid all bad events.

Or, if they are all independent, then the probability that none of Ei occurs is
∏n

i=1(1 −
P(Ei)) > 0 (provided that all P(Ei) < 1).

What if there are some weak dependencies?

Theorem 1.1.7 (Lovász local lemma). Let E1, . . . , En be events, with P[Ei] ≤ p for all
i. Suppose that each Ei is independent of all other Ej except for at most d of them. If

ep(d+ 1) < 1,

then with some positive probability, none of the events Ei occur.

Remark 1.1.8. The meaning of “independent of . . . ” is actually somewhat subtle (and
easily mistaken). We will come back to this issue later on when we discuss the local
lemma in more detail.

Theorem 1.1.9 (Spencer 1977). If e
((
k
2

)(
n
k−2

)
+ 1
)

21−(k2) < 1, then R(k, k) > n.

Proof. Random 2-color edges of Kn

For each k-vertex subset R, let ER be the event that R induces a monochromatic Kk.
P[ER] = 21−(k2).

ER is independent of all ES other than those such that |R ∩ S| ≥ 2

For each R, there are at most
(
k
2

)(
n
k−2

)
choices S with |S| = k and |R ∩ S| ≥ 2.

Apply Lovász local lemma to the events
{
ER : R ∈

(
V
k

)}
and p = 21−(k2) and d =

(
k
2

)(
n
k−2

)
,

we get that with positive probability none of the events ER occur, which gives a coloring
with no monochromatic Kk’s.

Remark 1.1.10. By optimizing the choice of n, we obtain

R(k, k) >

(√
2

e
+ o(1)

)
k2k/2
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once again improving the previous bound by a constant factor of
√

2. This is the best
known lower bound to R(k, k) to date.

1.2 Set systems

1.2.1 Sperner’s theorem

Let F a collection of subsets of {1, 2, . . . , n}. We say that F is an antichain if no set in
F is contained in another set in F .

Question 1.2.1. What is the maximum number of sets in an antichain?

Example: F =
(

[n]
k

)
has size

(
n
k

)
. Maximized when k =

⌊
n
2

⌋
or
⌈
n
2

⌉
. The next result shows

that we cannot do better.

Theorem 1.2.2 (Sperner 1928). If F is an antichain of subsets of {1, 2, . . . , n}, then

|F| ≤
(

n

bn/2c

)
.

In fact, we will show an even stronger result:

Theorem 1.2.3 (LYM inequality; Bollobás 1965, Lubell 1966, Meshalkin 1963, and
Yamamoto 1954). If F is an antichain of subsets of [n], then∑

A∈F

1(
n
|A|

) ≤ 1.

Sperner’s theorem follows since
(
n
|A|

)
≥
(

n
bn/2c

)
.

Proof. Consider a random permutation σ of {1, 2, . . . , n}, and its associated chain of
subsets

∅, {σ(1)} , {σ(1), σ(2)} , {σ(1), σ(2), σ(3)} , . . . , {σ(1), . . . , σ(n)}

where the last set is always equal to {1, 2, . . . , n}. For each A ⊂ {1, 2, . . . , n}, let EA
denote the event that A is found in this chain. Then

P(EA) =
|A|!(n− |A|)!

n!
=

1(
n
|A|

) .
Since F is an antichain, if A,B ∈ F are distinct, then EA and EB cannot both occur. So
{EA : A ∈ F} is a set of disjoint event, and thus their probabilities sum to at most 1.
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1.2.2 Bollobás two families theorem

Sperner’s theorem is generalized by the following celebrated result of Bollobás, which has
many more generalizations that we will not discuss here.

Theorem 1.2.4 (Bollobás (1965) “two families theorem”). Let A1, . . . , Am be r-element
sets and B1, . . . , Bm be s-element sets such that Ai ∩Bi = ∅ for all i and Ai ∩Bj 6= ∅ for
all i 6= j. Then m ≤

(
r+s
r

)
.

Remark 1.2.5. The bound is sharp: let Ai range over all r-element subsets of [r + s] and
set Bi = [r + s] \ Ai.

Let us give an application/motivation for Bollobás’ two families theorem in terms of
transversals.

Given a set family F , say that T is a transversal for F if T ∩ S 6= ∅ for all S ∈ F (i.e.,
T hits every element of F).

Let τ(F), the transversal number of F , be the size of the smallest transversal of F .

Say that F is τ-critical if τ(F \ {S}) < τ(F) for all S ∈ F .

Question 1.2.6. What is the maximum size of a τ -critical r-uniform F with τ(F) = s+1?

We claim that the answer is
(
r+s
r

)
. Indeed, let F = {A1, . . . , Am}, and Bi an s-element

transversal of F \ {Ai} for each i. Then the condition is satisfied. Thus m ≤
(
r+s
r

)
.

Conversely, F =
(

[r+s]
r

)
is τ -critcal r-uniform with τ(F) = s+ 1. (why?)

Here is a more general statement of the Bollobás’ two-family theorem.

Theorem 1.2.7. Let A1, . . . , Am and B1, . . . , Bm be finite sets such that Ai ∩Bi = ∅ for
all i and Ai ∩Bj 6= ∅ for all i 6= j. Then

m∑
i=1

(
|Ai|+ |Bi|
|Ai|

)−1

≤ 1.

Note that Sperner’s theorem and LYM inequality are also special cases, since if {A1, . . . , Am}
is an antichain, then setting Bi = [n] \ Ai for all i satisfies the hypothesis.

Proof. Consider a uniform random ordering of all elements.

Let Xi be the event that all elements of Ai come before Bi.

Then P[Xi] =
(|Ai|+|Bi|
|Ai|

)−1
(all permutations of Ai ∪Bi are equally likely to occur).
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Note that the events Xi are disjoint (Xi and Xj both occuring would contradict the
hypothesis for Ai, Bi, Aj, Bj). Thus

∑
i P[Xi] ≤ 1.

1.2.3 Erdős–Ko–Rado theorem on intersecting families

A family F of sets is intersecting if A ∩B 6= ∅ for all A,B ∈ F .

Question 1.2.8. What is the largest intersecting family of k-element subsets of [n]?

Example: F = all subsets containing the element 1. Then F is intersecting and |F| =(
n−1
k−1

)
Theorem 1.2.9 (Erdős–Ko–Rado 1961; proved in 1938). If n ≥ 2k, then every intersect-
ing family of k-element subsets of [n] has size at most

(
n−1
k−1

)
.

Remark 1.2.10. The assumption n ≥ 2k is necessary since if n < 2k, then the family of
all k-element subsets of [n] is automatically intersecting by pigeonhole.

Proof. Consider a uniform random circular permutation of 1, 2, . . . , n (arrange them ran-
domly around a circle)

For each k-element subset A of [n], we say that A is contiguous if all the elements of A
lie in a contiguous block on the circle.

The probability that A forms a contiguous set on the circle is exactly n/
(
n
k

)
.

So the expected number of contiguous sets in F is exactly n |F| /
(
n
k

)
.

Since F is intersecting, there are at most k contiguous sets in F (under every circular
ordering of [n]). Indeed, suppose that A ∈ F is contiguous. Then there are 2(k−1) other
contingous sets (not necessarily in F) that intersect A, but they can be paired off into
disjoint pairs. Since F is intersecting, it follows that it contains at most k contiguous
sets.

Combining with result from the previous paragraph, we see that n |F| /
(
n
k

)
≤ k, and hence

|F| ≤ k
n

(
n
k

)
=
(
n−1
k−1

)
.

1.3 2-colorable hypergraphs

An k-uniform hypergraph (or k-graph) is a pair H = (V,E), where V (vertices) is a
finite set and E (edges) is a set of k-element subsets of E, i.e., E ⊆

(
V
k

)
(so hypergraphs

are really the same concept as set families).
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We say that H is r-colorable if the vertices can be colored using r colors so that no edge
is monochromatic.

Let m(k) denote the minimum number of edges in a k-uniform hypergraph that is not 2-
colorable (elsewhere in the literature, “2-colorable” = “property B”, named after Bernstein
who introduced the concept in 1908)

m(2) = 3

m(3) = 7. Example: Fano plane (below) is not 2-colorable (the other direction is by
exhaustive search)

m(4) = 23, proved via exhaustive computer search (Östergård 2014)

Exact value of m(k) is unknown for all k ≥ 5

The probabilistic method gives a short proof of a lower bound (random coloring):

Theorem 1.3.1 (Erdős 1964). For any k ≥ 2, m(k) ≥ 2k−1, i.e., every k-uniform hyper-
graph with fewer than 2k−1 edges is 2-colorable.

Proof. Let there be m < 2k−1 edges. In a random 2-coloring, the probability that there
is a monochromatic edge is ≤ 2−k+1m < 1.

Remark 1.3.2. Later on we will prove an better lower bound m(k) & 2k
√
k/ log k, which

is the best known to date.

Perhaps somewhat surprisingly, the state of the art upper bound is also proved using
probabilistic method (random construction).

Theorem 1.3.3 (Erdős 1964). m(k) = O(k22k), i.e., there exists a k-uniform hypergraph
with O(k22k) edges that is not 2-colorable.

Proof. Fix |V | = n to be decided. Let H be the k-uniform hypergraph obtained by
choosing m random edges (with replacement) S1, . . . , Sm.

Given a coloring χ : V → [2], let Aχ denote the event that χ is a proper coloring (i.e., no
monochromatic edges). It suffices to check that

∑
χ P[Aχ] < 1.
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If χ colors a vertices with one color and b vertices with the other color, then the probability
that (random) S1 is monochromatic under (fixed) χ is(

a
k

)
+
(
b
k

)(
n
k

) ≥
2
(
n/2
k

)(
n
k

) =
2(n/2)(n/2− 1) · · · (n/2− k + 1)

n(n− 1) · · · (n− k + 1)

≥ 2

(
n/2− k + 1

n− k + 1

)k
= 2−k+1

(
1− k − 1

n− k + 1

)k
Setting n = k2, we see that the above quantity is at least c2−k for some constant c > 0.

Thus, the probability that χ is a proper coloring (i.e., no monochromatic edges) is at most
(1− c2−k)m ≤ e−c2

−km (using 1 + x ≤ ex for all real x).

Thus,
∑

χ P[Aχ] ≤ 2ne−c2
−km < 1 for some m = O(k22k) (recall n = k2).

1.4 List chromatic number of Kn,n

Given a graph G, its chromatic number χ(G) is the minimum number of colors required
to proper color its vertices.

In list coloring, each vertex of G is assigned a list of allowable colors. We say that G is
k-choosable (also called k-list colorable) if it has a proper coloring no matter how one
assigns a list of k colors to each vertex.

We write ch(G), called the choosability (also called: choice number, list colorability,
list chromatic number) of G, to be the smallest k so that G is k-choosable.

It should be clear that χ(G) ≤ ch(G), but the inequality may be strict.

For example, while every bipartite graph is 2-colorable, K3,3 is not 2-choosable. Indeed,
no list coloring of K3,3 is possible with color lists (check!):

{2, 3} {2, 3}
{1, 3} {1, 3}
{1, 2} {1, 2}

Easy to check then that ch(K3,3) = 3.

Question 1.4.1. What is the asymptotic behavior of ch(Kn,n)?

First we prove an upper bound on ch(Kn,n).

Theorem 1.4.2. If n < 2k−1, then Kn,n is k-choosable.
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In other words, ch(Kn,n) ≤ blog2(2n)c+ 1.

Proof. For each color, mark it either “L” or “R” iid uniformly.

For any vertex of Kn,n on the left part, remove all its colors marked R.

For any vertex of Kn,n on the right part, remove all its colors marked L.

The probability that some vertex has no colors remaining is at most 2n2−k < 1. So with
positive probability, every vertex has some color remaining. Assign the colors arbitrarily
for a valid coloring.

The lower bound on ch(Kn,n) turns out to follow from the existence of non-2-colorable
k-uniform hypergraph with many edges.

Theorem 1.4.3. If there exists a non-2-colorable k-uniform hypergraph with n edges,
then Kn,n is not k-choosable.

Proof. Let H = (V,E) be a k-uniform hypergraph |E| = n edges. Label the vertex of
Kn,n by ve and we as e ranges over E. View V as colors and assign to both ve and we a
list of colors given by the k-element set e.

If this Kn,n has a proper list coloring with the assigned colors. Let C be the colors used
among the n vertices. Then we get a proper 2-coloring of H by setting C black and V \C
white. So if H is not 2-colorable, then this Kn,n is not k-choosable.

Recall from Theorem 1.3.3 that there exists a non-2-colorable k-uniform hypergraph with
O(k22k) edges. Thus ch(Kn,n) > (1− o(1)) log2 n.

Putting these bounds together:

Corollary 1.4.4. ch(Kn,n) = (1 + o(1)) log2 n

It turns out that, unlike the chromatic number, the list chromatic number always grows
with the average degree. The following result was proved using the method of hyper-
graph containers (a very important modern development in combinatorics) provides
the optimal asymptotic dependence (the example of Kn,n shows optimality).

Theorem 1.4.5 (Saxton and Thomason 2015). If a graph G has average degree d, then
ch(G) > (1 + o(1)) log2 d.

They also proved similar results for the list chromatic number of hypergraphs. For graphs,
a slightly weaker result, off by a factor of 2, was proved earlier by Alon (2000).
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