

Image courtesy of Kmhkmh. Source: Wikimedia Commons. License CC BY.

Figure 1: Paul Erdős (1913-1996) is considered the father of the probabilistic method. He published around 1,500 papers during his lifetime, and had more than 500 collaborators. To learn more about Erdôs, see his biography The man who loved only numbers by Hoffman and the documentary N is a number.

1 Introduction

Probabilistic method: to prove that an object exists, show that a random construction works with positive probability

Tackle combinatorics problems by introducing randomness
Theorem 1.0.1. Every graph $G=(V, E)$ contains a bipartite subgraph with at least $|E| / 2$ edges.

Proof. Randomly color every vertex of G with black or white, iid uniform
Let $E^{\prime}=$ edges with one end black and one end white
Then $\left(V, E^{\prime}\right)$ is a bipartite subgraph of G
Every edge belongs to E^{\prime} with probability $\frac{1}{2}$, so by linearity of expectation, $\mathbb{E}\left[\left|E^{\prime}\right|\right]=\frac{1}{2}|E|$.
Thus there is some coloring with $\left|E^{\prime}\right| \geq \frac{1}{2}|E|$, giving the desired bipartite subgraph.

1.1 Lower bounds to Ramsey numbers

Ramsey number $R(k, \ell)=$ smallest n such that in every red-blue edge coloring of K_{n}, there exists a red K_{k} or a blue K_{ℓ}.
e.g., $R(3,3)=6$

Ramsey (1929) proved that $R(k, \ell)$ exists and is finite

© Cambridge Wittgenstein archive. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Figure 2: Frank Ramsey (1903-1930) wrote seminal papers in philosophy, economics, and mathematical logic, before his untimely death at the age of 26 from liver problems. See a recent profile of him in the New Yorker.

1.1.1 Erdős' original proof

The probabilistic method started with:
P. Erdős, Some remarks on the theory of graphs, BAMS, 1947

Remark 1.1.1 (Hungarian names). Typing "Erdős" in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$: Erd $\backslash \mathrm{H}\{\mathrm{o}\} \mathrm{s}$ and not Erd \backslash "os Hungarian pronunciations: $s=/ s h /$ and $s z=/ s /$, e.g., Erdős, Szekeres, Lovász

Theorem 1.1.2 (Erdős 1947). If $\binom{n}{k} 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$. In other words, there exist a red-blue edge-coloring of K_{n} without a monochromatic K_{k}.

Proof. Color edges uniformly at random
For every fixed subset R of k vertices, let A_{R} denote the event that R induces a monochromatic K_{k}. Then $\mathbb{P}\left(A_{R}\right)=2^{1-\binom{k}{2} \text {. }}$
$\mathbb{P}\left(\right.$ there exists a monochromatic $\left.K_{k}\right)=\mathbb{P}\left(\bigcup_{R \in\binom{[n]}{k}} A_{R}\right) \leq \sum_{R \in\binom{[n]}{k}} \mathbb{P}\left(A_{R}\right)=\binom{n}{k} 2^{1-\binom{k}{2}}<1$.
Thus, with positive probability, the random coloring gives no monochromatic K_{k}.
Remark 1.1.3. By optimizing n (using Stirling's formula) above, we obtain

$$
R(k, k)>\left(\frac{1}{e \sqrt{2}}+o(1)\right) k 2^{k / 2}
$$

Can be alternatively phrased as counting: of all $2^{\binom{n}{2}}$ possible colorings, not all are bad (this was how the argument was phrased in the original Erdôs 1947 paper.

In this course, we almost always only consider finite probability spaces. While in principle the finite probability arguments can be rephrased as counting, but some of the later more
involved arguments are impractical without a probabilistic perspective.
Constructive lower bounds? Algorithmic? Open! "Finding hay in a haystack"
Remark 1.1.4 (Ramsey number upper bounds). Erdős-Szekeres (1935):

$$
R(k+1, \ell+1) \leq\binom{ k+\ell}{k}
$$

Recent improvements by Conlon (2009), and most recently Sah (2020+):

$$
R(k+1, k+1) \leq e^{-c(\log k)^{2}}\binom{2 k}{k}
$$

All these bounds have the form $R(k, k) \leq(4+o(1))^{k}$. It is a major open problem whether $R(k, k) \leq(4-c)^{k}$ is true for some constant $c>0$ and all sufficiently large k.

1.1.2 Alteration method

Two steps: (1) randomly color (2) get rid of bad parts
Theorem 1.1.5. For any k, n, we have $R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}$.

Proof. Construct in two steps:
(1) Randomly 2-color the edges of K_{n}
(2) Delete a vertex from every monochromatic K_{k}

Final graph has no monochromatic K_{k}
After step (1), every fixed K_{k} is monochromatic with probability $2^{1-\binom{k}{2}}$, let X be the number of monochromatic K_{k} 's. $\mathbb{E} X=\binom{n}{k} 2^{1-\binom{k}{2}}$.
We delete at most $|X|$ vertices in step (2). Thus final graph has size $\geq n-|X|$, which has expectation $n-\binom{n}{k} 2^{1-\binom{k}{2}}$.
Thus with positive probability, the remaining graph has size at least $n-\binom{n}{k} 2^{1-\binom{k}{2}}$ (and no monochromatic K_{k} by construction)

Remark 1.1.6. By optimizing the choice of n in the theorem, we obtain

$$
R(k, k)>\left(\frac{1}{e}+o(1)\right) k 2^{k / 2}
$$

which improves the previous bound by a constant factor of $\sqrt{2}$.

1.1.3 Lovász local lemma

We give one more improvement to the lower bound, using the Lovász local lemma, which we will prove later in the course

Consider "bad events" E_{1}, \ldots, E_{n}. We want to avoid all.
If all $\mathbb{P}\left(E_{i}\right)$ small, say $\sum_{i} \mathbb{P}\left(E_{i}\right)<1$, then can avoid all bad events.
Or, if they are all independent, then the probability that none of E_{i} occurs is $\prod_{i=1}^{n}(1-$ $\left.\mathbb{P}\left(E_{i}\right)\right)>0\left(\right.$ provided that all $\left.\mathbb{P}\left(E_{i}\right)<1\right)$.

What if there are some weak dependencies?
Theorem 1.1.7 (Lovász local lemma). Let E_{1}, \ldots, E_{n} be events, with $\mathbb{P}\left[E_{i}\right] \leq p$ for all i. Suppose that each E_{i} is independent of all other E_{j} except for at most d of them. If

$$
e p(d+1)<1
$$

then with some positive probability, none of the events E_{i} occur.

Remark 1.1.8. The meaning of "independent of ..." is actually somewhat subtle (and easily mistaken). We will come back to this issue later on when we discuss the local lemma in more detail.

Theorem 1.1.9 (Spencer 1977). If $e\left(\binom{k}{2}\binom{n}{k-2}+1\right) 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.

Proof. Random 2-color edges of K_{n}
For each k-vertex subset R, let E_{R} be the event that R induces a monochromatic K_{k}. $\mathbb{P}\left[E_{R}\right]=2^{1-\binom{k}{2}}$.
E_{R} is independent of all E_{S} other than those such that $|R \cap S| \geq 2$
For each R, there are at most $\binom{k}{2}\binom{n}{k-2}$ choices S with $|S|=k$ and $|R \cap S| \geq 2$.
Apply Lovász local lemma to the events $\left\{E_{R}: R \in\binom{V}{k}\right\}$ and $p=2^{1-\binom{k}{2}}$ and $d=\binom{k}{2}\binom{n}{k-2}$, we get that with positive probability none of the events E_{R} occur, which gives a coloring with no monochromatic K_{k} 's.

Remark 1.1.10. By optimizing the choice of n, we obtain

$$
R(k, k)>\left(\frac{\sqrt{2}}{e}+o(1)\right) k 2^{k / 2}
$$

once again improving the previous bound by a constant factor of $\sqrt{2}$. This is the best known lower bound to $R(k, k)$ to date.

1.2 Set systems

1.2.1 Sperner's theorem

Let \mathcal{F} a collection of subsets of $\{1,2, \ldots, n\}$. We say that \mathcal{F} is an antichain if no set in \mathcal{F} is contained in another set in \mathcal{F}.

Question 1.2.1. What is the maximum number of sets in an antichain?
Example: $\mathcal{F}=\binom{[n]}{k}$ has size $\binom{n}{k}$. Maximized when $k=\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$. The next result shows that we cannot do better.

Theorem 1.2.2 (Sperner 1928). If \mathcal{F} is an antichain of subsets of $\{1,2, \ldots, n\}$, then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

In fact, we will show an even stronger result:
Theorem 1.2.3 (LYM inequality; Bollobás 1965, Lubell 1966, Meshalkin 1963, and Yamamoto 1954). If \mathcal{F} is an antichain of subsets of $[n]$, then

$$
\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \leq 1
$$

Sperner's theorem follows since $\binom{n}{|A|} \geq\binom{ n}{\lfloor n / 2\rfloor}$.
Proof. Consider a random permutation σ of $\{1,2, \ldots, n\}$, and its associated chain of subsets

$$
\emptyset,\{\sigma(1)\},\{\sigma(1), \sigma(2)\},\{\sigma(1), \sigma(2), \sigma(3)\}, \ldots,\{\sigma(1), \ldots, \sigma(n)\}
$$

where the last set is always equal to $\{1,2, \ldots, n\}$. For each $A \subset\{1,2, \ldots, n\}$, let E_{A} denote the event that A is found in this chain. Then

$$
\mathbb{P}\left(E_{A}\right)=\frac{|A|!(n-|A|)!}{n!}=\frac{1}{\binom{n}{|A|}} .
$$

Since \mathcal{F} is an antichain, if $A, B \in \mathcal{F}$ are distinct, then E_{A} and E_{B} cannot both occur. So $\left\{E_{A}: A \in \mathcal{F}\right\}$ is a set of disjoint event, and thus their probabilities sum to at most 1 .

1.2.2 Bollobás two families theorem

Sperner's theorem is generalized by the following celebrated result of Bollobás, which has many more generalizations that we will not discuss here.

Theorem 1.2.4 (Bollobás (1965) "two families theorem"). Let A_{1}, \ldots, A_{m} be r-element sets and B_{1}, \ldots, B_{m} be s-element sets such that $A_{i} \cap B_{i}=\emptyset$ for all i and $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$. Then $m \leq\binom{ r+s}{r}$.

Remark 1.2.5. The bound is sharp: let A_{i} range over all r-element subsets of $[r+s]$ and set $B_{i}=[r+s] \backslash A_{i}$.

Let us give an application/motivation for Bollobás' two families theorem in terms of transversals.

Given a set family \mathcal{F}, say that T is a transversal for \mathcal{F} if $T \cap S \neq \emptyset$ for all $S \in \mathcal{F}$ (i.e., T hits every element of \mathcal{F}).

Let $\tau(\mathcal{F})$, the transversal number of \mathcal{F}, be the size of the smallest transversal of \mathcal{F}.
Say that \mathcal{F} is τ-critical if $\tau(\mathcal{F} \backslash\{S\})<\tau(\mathcal{F})$ for all $S \in \mathcal{F}$.
Question 1.2.6. What is the maximum size of a τ-critical r-uniform \mathcal{F} with $\tau(\mathcal{F})=s+1$?

We claim that the answer is $\binom{r+s}{r}$. Indeed, let $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$, and B_{i} an s-element transversal of $\mathcal{F} \backslash\left\{A_{i}\right\}$ for each i. Then the condition is satisfied. Thus $m \leq\binom{ r+s}{r}$.
Conversely, $\mathcal{F}=\binom{[r+s]}{r}$ is τ-critcal r-uniform with $\tau(\mathcal{F})=s+1$. (why?)
Here is a more general statement of the Bollobás' two-family theorem.
Theorem 1.2.7. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be finite sets such that $A_{i} \cap B_{i}=\emptyset$ for all i and $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$. Then

$$
\sum_{i=1}^{m}\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1
$$

Note that Sperner's theorem and LYM inequality are also special cases, since if $\left\{A_{1}, \ldots, A_{m}\right\}$ is an antichain, then setting $B_{i}=[n] \backslash A_{i}$ for all i satisfies the hypothesis.

Proof. Consider a uniform random ordering of all elements.
Let X_{i} be the event that all elements of A_{i} come before B_{i}.
Then $\mathbb{P}\left[X_{i}\right]=\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1}$ (all permutations of $A_{i} \cup B_{i}$ are equally likely to occur).

Note that the events X_{i} are disjoint (X_{i} and X_{j} both occuring would contradict the hypothesis for $\left.A_{i}, B_{i}, A_{j}, B_{j}\right)$. Thus $\sum_{i} \mathbb{P}\left[X_{i}\right] \leq 1$.

1.2.3 Erdôs-Ko-Rado theorem on intersecting families

A family \mathcal{F} of sets is intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$.
Question 1.2.8. What is the largest intersecting family of k-element subsets of $[n]$?

Example: $\mathcal{F}=$ all subsets containing the element 1 . Then \mathcal{F} is intersecting and $|\mathcal{F}|=$ $\binom{n-1}{k-1}$

Theorem 1.2.9 (Erdős-Ko-Rado 1961; proved in 1938). If $n \geq 2 k$, then every intersecting family of k-element subsets of $[n]$ has size at most $\binom{n-1}{k-1}$.

Remark 1.2.10. The assumption $n \geq 2 k$ is necessary since if $n<2 k$, then the family of all k-element subsets of $[n]$ is automatically intersecting by pigeonhole.

Proof. Consider a uniform random circular permutation of $1,2, \ldots, n$ (arrange them randomly around a circle)

For each k-element subset A of $[n]$, we say that A is contiguous if all the elements of A lie in a contiguous block on the circle.
The probability that A forms a contiguous set on the circle is exactly $n /\binom{n}{k}$.
So the expected number of contiguous sets in \mathcal{F} is exactly $n|\mathcal{F}| /\binom{n}{k}$.
Since \mathcal{F} is intersecting, there are at most k contiguous sets in \mathcal{F} (under every circular ordering of $[n])$. Indeed, suppose that $A \in \mathcal{F}$ is contiguous. Then there are $2(k-1)$ other contingous sets (not necessarily in \mathcal{F}) that intersect A, but they can be paired off into disjoint pairs. Since \mathcal{F} is intersecting, it follows that it contains at most k contiguous sets.
Combining with result from the previous paragraph, we see that $n|\mathcal{F}| /\binom{n}{k} \leq k$, and hence $|\mathcal{F}| \leq \frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}$.

1.3 2-colorable hypergraphs

An k-uniform hypergraph (or k-graph) is a pair $H=(V, E)$, where V (vertices) is a finite set and E (edges) is a set of k-element subsets of E, i.e., $E \subseteq\binom{V}{k}$ (so hypergraphs are really the same concept as set families).

We say that H is r-colorable if the vertices can be colored using r colors so that no edge is monochromatic.

Let $m(k)$ denote the minimum number of edges in a k-uniform hypergraph that is not 2 colorable (elsewhere in the literature, "2-colorable" = "property B", named after Bernstein who introduced the concept in 1908)
$m(2)=3$
$m(3)=7$. Example: Fano plane (below) is not 2-colorable (the other direction is by exhaustive search)

$m(4)=23$, proved via exhaustive computer search (Östergård 2014)
Exact value of $m(k)$ is unknown for all $k \geq 5$
The probabilistic method gives a short proof of a lower bound (random coloring):
Theorem 1.3.1 (Erdős 1964). For any $k \geq 2, m(k) \geq 2^{k-1}$, i.e., every k-uniform hypergraph with fewer than 2^{k-1} edges is 2 -colorable.

Proof. Let there be $m<2^{k-1}$ edges. In a random 2-coloring, the probability that there is a monochromatic edge is $\leq 2^{-k+1} m<1$.

Remark 1.3.2. Later on we will prove an better lower bound $m(k) \gtrsim 2^{k} \sqrt{k / \log k}$, which is the best known to date.

Perhaps somewhat surprisingly, the state of the art upper bound is also proved using probabilistic method (random construction).

Theorem 1.3.3 (Erdôs 1964). $m(k)=O\left(k^{2} 2^{k}\right)$, i.e., there exists a k-uniform hypergraph with $O\left(k^{2} 2^{k}\right)$ edges that is not 2-colorable.

Proof. Fix $|V|=n$ to be decided. Let H be the k-uniform hypergraph obtained by choosing m random edges (with replacement) S_{1}, \ldots, S_{m}.
Given a coloring $\chi: V \rightarrow[2]$, let A_{χ} denote the event that χ is a proper coloring (i.e., no monochromatic edges). It suffices to check that $\sum_{\chi} \mathbb{P}\left[A_{\chi}\right]<1$.

If χ colors a vertices with one color and b vertices with the other color, then the probability that (random) S_{1} is monochromatic under (fixed) χ is

$$
\begin{aligned}
& \frac{\binom{a}{k}+\binom{b}{k}}{\binom{n}{k}} \geq \frac{2\binom{n / 2}{k}}{\binom{n}{k}}=\frac{2(n / 2)(n / 2-1) \cdots(n / 2-k+1)}{n(n-1) \cdots(n-k+1)} \\
& \quad \geq 2\left(\frac{n / 2-k+1}{n-k+1}\right)^{k}=2^{-k+1}\left(1-\frac{k-1}{n-k+1}\right)^{k}
\end{aligned}
$$

Setting $n=k^{2}$, we see that the above quantity is at least $c 2^{-k}$ for some constant $c>0$.
Thus, the probability that χ is a proper coloring (i.e., no monochromatic edges) is at most $\left(1-c 2^{-k}\right)^{m} \leq e^{-c 2^{-k} m}$ (using $1+x \leq e^{x}$ for all real x).
Thus, $\sum_{\chi} \mathbb{P}\left[A_{\chi}\right] \leq 2^{n} e^{-c 2^{-k} m}<1$ for some $m=O\left(k^{2} 2^{k}\right)\left(\right.$ recall $\left.n=k^{2}\right)$.

1.4 List chromatic number of $K_{n, n}$

Given a graph G, its chromatic number $\chi(G)$ is the minimum number of colors required to proper color its vertices.

In list coloring, each vertex of G is assigned a list of allowable colors. We say that G is k-choosable (also called k-list colorable) if it has a proper coloring no matter how one assigns a list of k colors to each vertex.

We write $\operatorname{ch}(G)$, called the choosability (also called: choice number, list colorability, list chromatic number) of G, to be the smallest k so that G is k-choosable.

It should be clear that $\chi(G) \leq \operatorname{ch}(G)$, but the inequality may be strict.
For example, while every bipartite graph is 2-colorable, $K_{3,3}$ is not 2-choosable. Indeed, no list coloring of $K_{3,3}$ is possible with color lists (check!):

Easy to check then that $\operatorname{ch}\left(K_{3,3}\right)=3$.
Question 1.4.1. What is the asymptotic behavior of $\operatorname{ch}\left(K_{n, n}\right)$?

First we prove an upper bound on $\operatorname{ch}\left(K_{n, n}\right)$.
Theorem 1.4.2. If $n<2^{k-1}$, then $K_{n, n}$ is k-choosable.

In other words, $\operatorname{ch}\left(K_{n, n}\right) \leq\left\lfloor\log _{2}(2 n)\right\rfloor+1$.
Proof. For each color, mark it either "L" or "R" iid uniformly.
For any vertex of $K_{n, n}$ on the left part, remove all its colors marked R .
For any vertex of $K_{n, n}$ on the right part, remove all its colors marked L.
The probability that some vertex has no colors remaining is at most $2 n 2^{-k}<1$. So with positive probability, every vertex has some color remaining. Assign the colors arbitrarily for a valid coloring.

The lower bound on $\operatorname{ch}\left(K_{n, n}\right)$ turns out to follow from the existence of non-2-colorable k-uniform hypergraph with many edges.

Theorem 1.4.3. If there exists a non-2-colorable k-uniform hypergraph with n edges, then $K_{n, n}$ is not k-choosable.

Proof. Let $H=(V, E)$ be a k-uniform hypergraph $|E|=n$ edges. Label the vertex of $K_{n, n}$ by v_{e} and w_{e} as e ranges over E. View V as colors and assign to both v_{e} and w_{e} a list of colors given by the k-element set e.

If this $K_{n, n}$ has a proper list coloring with the assigned colors. Let C be the colors used among the n vertices. Then we get a proper 2-coloring of H by setting C black and $V \backslash C$ white. So if H is not 2-colorable, then this $K_{n, n}$ is not k-choosable.

Recall from Theorem 1.3.3 that there exists a non-2-colorable k-uniform hypergraph with $O\left(k^{2} 2^{k}\right)$ edges. Thus $\operatorname{ch}\left(K_{n, n}\right)>(1-o(1)) \log _{2} n$.
Putting these bounds together:
Corollary 1.4.4. $\operatorname{ch}\left(K_{n, n}\right)=(1+o(1)) \log _{2} n$

It turns out that, unlike the chromatic number, the list chromatic number always grows with the average degree. The following result was proved using the method of hypergraph containers (a very important modern development in combinatorics) provides the optimal asymptotic dependence (the example of $K_{n, n}$ shows optimality).

Theorem 1.4.5 (Saxton and Thomason 2015). If a graph G has average degree d, then $\operatorname{ch}(G)>(1+o(1)) \log _{2} d$.

They also proved similar results for the list chromatic number of hypergraphs. For graphs, a slightly weaker result, off by a factor of 2 , was proved earlier by Alon (2000).

MIT OpenCourseWare
https://ocw.mit.edu
18.226 Probabilistic Method in Combinatorics

Fall 2020

For information aboutciting these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

