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5 Chernoff bound

Chernoff bounds give us much better tail bounds than the second moment method when
applied to sums of independent random variables. This is one of the most useful bounds
in probabilistic combinatorics.

The proof technique of bounding the exponential moments is perhaps just as important
as the resulting bounds themselves. We will see this proof method come up again later
on when we prove martingale concentration inequalities. The method allows us to adapt
the proof of the Chernoff bound to other distributions. Let us give the proof in the most
basic case for simplicity and clarity.

Theorem 5.0.1. Let Sn = X1 + · · · + Xn where Xi ∈ {−1, 1} uniformly iid. Let λ > 0.
Then

P(Sn ≥ λ
√
n) ≤ e−λ

2/2

Note that in contrast, VarSn = n, so Chebyshev’s inequality would only give a tail bound
≤ 1/λ2

Proof. Let t ≥ 0. Consider the moment generating function

E
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]
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∑
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E
[
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]
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(
e−t + et
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)n
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We have (by comparing Taylor series coefficients 1
(2n)!
≤ 1

n!2n
), for all t ≥ 0,

e−t + et

2
≤ et

2/2.

By Markov’s inequality,

P(Sn ≥ λ
√
n) ≤

E
[
etS
]

etλ
√
n
≤ e−tλ

√
n+t2n/2

Set t = λ/
√
n gives the bound.

Remark 5.0.2. The technique of considering the moment generating function can be
thought morally as taking an appropriately high moment. Indeed, E[etS] =

∑
n≥0 E[Sn]tn/n!

contains all the moments data of the random variable.

The second moment method (Chebyshev + Markov) can be thought of as the first iter-
ation of this idea. By taking fourth moments (now requiring 4-wise independence of the
summands), we can obtain tail bounds of the form . λ−4. And similarly with higher
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moments.

In some applications, where one cannot assume independence, but can estimate high
moments, the above philosophy can allow us to prove good tail bounds as well.

Also by symmetry, P(Sn ≤ −λ
√
n) ≤ e−λ

2/2. Thus we have the following two-sided tail
bound.

Corollary 5.0.3. P(|Sn| ≥ λ
√
n) ≤ 2e−λ

2/2

Remark 5.0.4. It is easy to adapt the above proof so that each Xi is a mean-zero random
variable taking [−1, 1]-values, and independent (but not necessarily identical) across all
i. Indeed, by convexity, we have etx ≤ 1−x

2
e−t + 1+x

2
et for all x ∈ [−1, 1] by convexity, so

that E[etX ] ≤ et+e−t

2
. In particular, we obtain the following tail bounds on the binomial

distribution.

Theorem 5.0.5. Let each Xi be an independent random variable taking values in [−1, 1]

and EXi = 0. Then Sn = X1 + · · ·+Xn satisfies

P(Sn ≥ λ
√
n) ≤ e−λ

2/2.

Corollary 5.0.6. Let X be a sum of n independent Bernoulli’s (not necessarily the same
probability). Let µ = EX and λ > 0. Then Then

P(X ≥ µ+ λ
√
n) ≤ e−λ

2/2 and P(X ≤ µ− λ
√
n) ≤ e−λ

2/2

The quality the Chernoff compares well to that of the normal distribution. For the
standard normal Z ∼ N(0, 1), one has E[etZ ] = et

2/2 and so

P(Z ≥ λ) = P(etZ ≥ etλ) ≤ e−tλE[etX ] = e−tλ+t2/2

Set t = λ and get
P(Z ≥ λ) ≤ e−λ

2/2

And this is actually pretty tight, as, for λ→∞,

P(Z ≥ λ) =
1√
2π

∫ ∞
λ

e−t
2/2 dt ∼ e−λ

2/2

√
2πλ

The same proof method allows you to prove bounds for other sums of random variables,
suitable for whatever application you have in mind. See Alon–Spencer Appendix A for
some calculations.
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For example, for a sum of independent Bernoulli’s with small means, we can improve on
the above estimates as follows

Theorem 5.0.7. Let X be the sum of independent Bernoulli random variables (not
necessarily same probability). Let µ = EX. For all ε > 0,

P(X ≥ (1 + ε)µ) ≤ e−((1+ε) log(1+ε)−ε)µ ≤ e−
ε2

1+ε
µ

and
P(X ≤ (1− ε)µ) ≤ e−ε

2µ/2.

Remark 5.0.8. The bounds for upper and lower tails are necessarily asymmetric, when
the probabilities are small. Why? Think about what happens when X ∼ Bin(n, c/n),
which, for a constant c > 0, converges as n → ∞ to a Poisson distribution with mean c,
whose value at k is ckek/k! = e−Θ(k log k) and not e−Ω(k2) as one might naively predict by
an incorrect application of the Chernoff bound formula.

Nonetheless, both formulas tell us that both tails exponentially decay like ε2 for small
values of ε, say, ε ∈ [0, 1].

5.1 Discrepancy

Theorem 5.1.1. Let F be a collection of m subsets of [n]. Then there exists some
assignment [n] → {−1, 1} so that the sum on every set in F is at most 2

√
n logm in

absolute value.

Proof. Put ±1 iid uniformly at random on each vertex. On each edge, the probability that
the sum exceeds 2

√
n logm in absolute value is, by Chernoff bound, less than 2e−2 logm =

2/m2. By union bound over all m edges, with probability greater than 1 − 2/m ≥ 0, no
edge has sum exceeding 2

√
n logm.

Remark 5.1.2. In a beautiful landmark paper titled Six standard deviations suffice, Spencer
(1985) showed that one can remove the logarithmic term by a more sophisticated semi-
random assignment algorithm.

Theorem 5.1.3 (Spencer (1985)). Let F be a collection of n subsets of [n]. Then there
exists some assignment [n]→ {−1, 1} so that the sum on every set in F is at most 6

√
n

in absolute value.
More generally, if F be a collection of m ≥ n subsets of [n], then we can replace 6

√
n by

11
√
n log(2m/n).
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Remark 5.1.4. More generally, Spencer proves that the same holds if vertices have [0, 1]-
valued weights.

The idea, very roughly speaking, is to first generalize from {−1, 1}-valued assignments to
[−1, 1]-valued assignments. Then the all-zero vector is a trivially satisfying assignment.
We then randomly, in iterations, alter the values from 0 to other values in [−1, 1], while
avoiding potential violations (e.g., edges with sum close to 6

√
n in absolute value), and

finalizing a color of a color when its value moves to either −1 and 1.

Spencer’s original proof was not algorithmic, and he suspected that it could not be made
efficiently algorithmic. In a breakthrough result, Bansal (2010) gave an efficient algorithm
for producing a coloring with small discrepancy. Another very nice algorithm with another
beautiful proof of the algorithmic result was given by Lovett and Meka (2015).

Here is a famous conjecture on discrepancy.

Conjecture 5.1.5 (Komlós). There exists some absolute constant K so that for every
set of vectors v1, . . . , vm in the unit ball in Rn, there exists signs ε1, . . . , εm ∈ {−1, 1} such
that

ε1v1 + · · ·+ εmvm ∈ [−K,K]n.

Banaszczyk (1998) proved the bound K = O(
√

log n) in a beautiful paper using deep
ideas from convex geometry.

Spencer’s theorem’s implies the Komlós conjecture if all vectors vi have the form n−1/2(±1, . . . ,±1)

(or more generally when all coordinates are O(n−1/2)). The deduction is easy whenm ≤ n.
When m > n, we use the following observation.

Lemma 5.1.6. Let v1, . . . , vm ∈ Rn. Then there exists a1, . . . , am ∈ [−1, 1]m with
|{i : ai /∈ {−1, 1}}| ≤ n such that

a1v1 + · · ·+ amvm = 0

Proof. Find (a1, . . . , am) ∈ [−1, 1]m satisfying and as many ai ∈ {−1, 1} as possible. Let
I = {i : ai /∈ {−1, 1}}. If |I| > n, then we can find some nontrivial linear combination
of the vectors vi, i ∈ I, allowing us to to move (ai)i∈I ’s to new values, while preserving
a1v1 + · · ·+ amvm = 0, and end up with at one additional ai taking {−1, 1}-value.

Letting a1, . . . , am and I = {i : ai /∈ {−1, 1}} as in the Lemma, we then take εi = ai for
all i /∈ I, and apply a corollary of Spencer’s theorem to find εi ∈ {−1, 1}n, i ∈ I with∑

i∈I

(εi − ai)vi ∈ [−K,K]n,

53

https://mathscinet.ams.org/mathscinet-getitem?mr=3024770
https://mathscinet.ams.org/mathscinet-getitem?mr=3416145
https://mathscinet.ams.org/mathscinet-getitem?mr=1639752


5 Chernoff bound Probabilistic Methods in Combinatorics — Yufei Zhao

which would yield the desired result. The above step can be deduced from Spencer’s
theorem by first assuming that each ai ∈ [−1, 1] has finite binary length (a compactness
argument), and then rounding it off one digit at a time during Spencer’s theorem, starting
from the least significant bit (see Corollary 8 in Spencer’s paper for details).

5.2 Hajós conjecture counterexample

We begin by reviewing some classic result from graph theory. Recall some definitions:

• H is an induced subgraph of G if H can be obtained from G by removing vertices;

• H is a subgraph if G if H can be obtained from G by removing vertices and edges;

• H is a subdivision of G if H can be obtained from a subgraph of G by contracting
induced paths to edges;

• H is a minor of G if H can be obtained from a subgraph of G by by contracting
edges to vertices.

Kuratowski’s theorem (1930). Every graph without K3,3 and K5 as subdivisions as
subdivision is planar.

Wagner’s theorem (1937). Every graph free of K3,3 and K5 as minors is planar.

(There is a short argument shows that Kuratowski and Wagner’s theorems are equivalent.)

Four color theorem (Appel and Haken 1977) Every planar graph is 4-colorable.

Corollary: Every graph without K3,3 and K5 as minors is 4-colorable.

The condition on K5 is clearly necessary, but what about K3,3? What is the “real” reason
for 4-colorability.

Hadwidger posed the following conjecture, which is one of the biggest open conjectures
in graph theory.

Conjecture 5.2.1 (Hadwiger 1936). For every t ≥ 1, every graph without a Kt+1 minor
is t-colorable.

t = 1 trivial

t = 2 nearly trivial (if G is K3-minor-free, then it’s a tree)

t = 3 elementary graph theoretic arguments

t = 4 is equivalent to the 4-color theorem (Wagner 1937)

54

https://mathscinet.ams.org/mathscinet-getitem?mr=1549785
https://mathscinet.ams.org/mathscinet-getitem?mr=1513158
https://mathscinet.ams.org/mathscinet-getitem?mr=543792
https://mathscinet.ams.org/mathscinet-getitem?mr=0012237
https://mathscinet.ams.org/mathscinet-getitem?mr=1513158


5 Chernoff bound Probabilistic Methods in Combinatorics — Yufei Zhao

t = 5 is equivalent to the 4-color theorem (Robertson–Seymour–Thomas 1994; this work
won a Fulkerson Prize)

t ≥ 6 remains open

Let us explore a variation of Hadwiger’s conjecture:

Hajós conjecture. (1961) Every graph without a Kt+1-subdivision is t-colorable.

Hajós conjecture is true for t ≤ 3. However, it turns out to be found in general. Catlin
(1979) constructed counterexamples for all t ≥ 6 (t = 4, 5 are still open).

It turns out that Hajós conjecture is not just false, but very false.

Erdős–Fajtlowicz (1981) showed that almost every graph is a counterexample (it’s a good
idea to check for potential counterexamples among random graphs!)

To be continued

Theorem 5.2.2. With probability 1 − o(1), G(n, 1/2) has no Kt-subdivision with t =

d10
√
ne.

From Theorem 4.3.3 we show that, with high probability, G(n, 1/2) has independence
number ∼ 2 log2 n and hence chromatic number ≥ (1 + o(1) n

2 log2 n
. Thus the above result

shows that G(n, 1/2) is whp a counterexample to Hajós conjecture.

Proof. If G had a Kt-subdivision, say with S ⊂ V , |S| = t, then at most n − t ≤ n of
the edges in the subdivision can be paths with at least two edges (since they must use
distinct vertices outside S). So S must induce at least

(
t
2

)
− n ≥ 3

4

(
t
2

)
edges in G.

By Chernoff bound, for fixed t-vertex subset S

P
(
e(S) ≥ 3

4

(
t

2

))
≤ e−t

2/10.

Taking a union bound over all t-vertex subsets S, and noting that(
n

t

)
e−t

2/10 < nte−t
2/10 ≤ e−10n+O(

√
n logn) = o(1)

we see that whp no such S exists, so that this G(n, 1/2) whp has no Kt-subdivision

Remark 5.2.3. One can ask the following quantitative question regarding Hadwidger’s
conjecture:

Can we show that every graph without a Kt+1-minor can be properly colored with a small
number of colors?

Wagner (1964) showed that every graph without Kt+1-minor is 2t−1 colorable.
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Here is the proof: assume that the graph is connected. Take a vertex v and let Li be
the set of vertices with distance exactly i from v. The subgraph induced on Li has no
Kt-minor, since otherwise such a Kt-minor would extend to a Kt+1-minor with v. Then
by induction Li is 2t−2-colorable (check base cases), and using alternating colors for even
and odd layers Li yields a proper coloring of G.

This bound has been improved over time. The best current bound was proved this past
summer. Postle (2020+) showed that if every graph with no Kt-minor is O(t(log log t)6)-
colorable.

For more on Hadwiger’s conjecture, see Seymour’s survey (2016).
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