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7 Correlation inequalities

Consider an Erdős–Rényi random graph G(n, p). If we condition on it having a Hamilto-
nian cycle, intuitively, it seems that this conditioning would cause us to have more edges
and thereby decreasing the likelihood that the random graph is planar. The main theorem
of this chapter, the Harris–FKG inequality, makes this notion precise.

7.1 Harris–FKG inequality

Setup. We have n independent Bernoulli random variables x1, . . . , xn (not necessarily
identical, but independence is important).

An increasing event (or increasing property) A is defined by an upward closed subset
of {0, 1}n (an up-set), i.e.,

x ∈ A and x ≤ y (coordinatewise) =⇒ y ∈ A.

Examples in increasing properties of graphs:

• Having a Hamiltonian cycle

• Connected

• Average degree ≥ 4 (or: min degree, max degree, etc.)

• Having a triangle

• Not 4-colorable

Similarly, a decreasing event is defined by a downward closed collection of subset of
{0, 1}n.

Note that A ⊂ {0, 1}n is increasing if and only if its complement A ⊂ {0, 1}n is decreasing

The main theorem of this chapter is the following, which tells us that

increasing events of independent variables are positively correlated

Theorem 7.1.1 (Harris 1960). If A and B are increasing events of independent boolean
random variables, then

P(A ∧B) ≥ P(A)P(B)

Equivalently, we can write P (A | B) ≥ P(A).
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Remark 7.1.2. Many of such inequalities were initially introduced for the problem of
percolations, e.g., if we keep each edge of the infinite grid graph with vertex set Z2 with
probability p, what is the probability that the origin is part of an infinite component (in
which case we say that there is “percolation”). Harris showed that with probability 1,
percolation does not occur for p ≤ 1/2. A later breakthrough of Kesten (1980) shows that
percolation occurs with probability for all p > 1/2. Thus the “bond percolation threshold”
for Z2 is exactly 1/2. Such exact results are extremely rare.

We state and prove a more general result, which says that independent random variables
possess positive association.

Let each Ωi be a linearly ordered set (i.e., {0, 1}, R) and xi ∈ Ωi with respect to some
probability distribution independent for each i. We say that a function f(x1, . . . , xn) is
monotone increasing if

x ≤ y (coordinatewise) =⇒ f(x) ≤ f(y).

Theorem 7.1.3 (Harris). If f and g are monotone increasing functions of independent
random variables, then

E[fg] ≥ (Ef)(Eg).

This version of Harris inequality implies the earlier version by setting f = 1A and g = 1B.

Remark 7.1.4. The inequality is often called the FKG inequality, attributed to Fortuin,
Kasteleyn, Ginibre (1971), who proved a more general result in the setting of distributive
lattices, which we will not discuss here.

Proof. We use induction on n by integrating out the inequality one variable at a time.
For n = 1, for independent x, y ∈ Ω1, we have

0 ≤ E[(f(x)− f(y)(g(x)− g(y)] = 2E[fg]− 2(Ef)(Eg),

so E[fg] ≥ E[f ]E[g] (this is sometimes called Chebyshev’s inequality/rearrangement in-
equality).

Now assume n ≥ 2. Let h = fg. Define marginals f1, g1, h1 : Ω1 → R by

f1(y1) = E[f |x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [f(y1, x2, . . . , xn)],

g1(y1) = E[g|x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [g(y1, x2, . . . , xn)],

h1(y1) = E[h|x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [h(y1, x2, . . . , xn)],

Then f1 and g1 are 1-variable monotone increasing functions on Ω1 (check!).
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For every fixed y1 ∈ Ω1, the function (x2, . . . , xn) 7→ f(y1, x2, . . . , xn) is monotone increas-
ing, and likewise with g. So applying the induction hypothesis for n− 1, we have

h1(y1) ≥ f1(y1)g1(y1). (7.1)

Thus

E[fg] = E[h] = E[h1]

≥ E[f1g1] [by (7.1)]

≥ (Ef1)(Eg1) [by the n = 1 case]

= (Ef)(Eg).

Corollary 7.1.5. Let A and B be events on independent random variables.

(a) If A and B are decreasing, then P(A ∧B) ≥ P(A)P(B).

(b) If A is increasing and B is decreasing, then P(A ∧B) ≤ P(A)P(B).

If A1, . . . , Ak are all increasing (or all decreasing) events on independent random variables,
then

P(A1 · · ·Ak) ≥ P(A1) · · ·P(Ak).

Proof. For the second inequality, note that the complement B is increasing, so

P(AB) = P(A)− P(AB)
Harris
≤ P(A)− P(A)P(B) = P(A)P(B).

The proof of the first inequality is similar. For the last inequality we apply the Harris
inequality repeatedly.

7.2 Applications to random graphs

7.2.1 Triangle-free probability

Question 7.2.1. What’s the probability that G(n, p) is triangle-free?

Harris inequality will allow us to prove a lower bound. In the next chapter, we will use
Janson inequalities to derive upper bounds.
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Theorem 7.2.2. P(G(n, p) is triangle-free) ≥ (1− p3)(
n
3)

Proof. For each triple of distinct vertices i, j, k ∈ [n], let Aijk be the event that ijk is a
triangle in G(n, p). Then Aijk is increasing, and

P(G(n, p) is triangle-free) ≥ P

( ∧
i<j<k

Aijk

)
≥
∏
i<j<k

P(Aijk) = (1− p3)(
n
3).

Remark 7.2.3. How good is this bound? For p ≤ 0.99, we have 1 − p3 = e−Θ(p3), so the
above bound gives

P(G(n, p) is triangle-free) ≥ e−Θ(n3p3).

Here is another lower bound

P(G(n, p) is triangle-free) ≥ P(G(n, p) is empty) = (1− p)(
n
2) = e−Θ(n2p).

The bound from Harris is better when p� n−1/2. Putting them together, we obtain

P(G(n, p) is triangle-free) &

{
e−Θ(n3p3) if p . n−1/2

e−Θ(n2p) if n−1/2 . p ≤ 0.99

(note that the asymptotics agree at the boundary p � n−1/2. In the next chapter, we will
prove matching upper bounds using Janson inequalities.

7.2.2 Maximum degree

Question 7.2.4. What’s the probability that the maximum degree of G(n, 1/2) is at
most n/2?

For each vertex v, deg(v) ≤ n/2 is a decreasing event with probability just slightly over
1/2. So by Harris inequality, the probability that every v has deg(v) ≤ n/2 is at least
≥ 2−n.

It turns out that the appearance of high degree vertices is much more correlated than the
independent case. The truth is exponentially more than the above bound.

Theorem 7.2.5 (Riordan and Selby 2000).

P(maxdegG(n, 1/2) ≤ n/2) = (0.6102 · · ·+ o(1))n
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Instead of giving a proof, we consider an easier continuous model of the problem that
motivates the numerical answer. Turning this continuous model paper into a rigorous
proof about random graphs is more technical.

In a random graphs, we assign independent Bernoulli random variables on edges of a
complete graph. Instead, let us assign independent standard normal random variables
Zuv to each edge uv of Kn.

Let Wv =
∑

u6=v Zuv, which models how much the degree of vertex v deviates from its
expectation. In particular Wv is symmetric and mean 0, and P(Wv ≤ 0).

The problem of estimating the probability that maxdegG(n, 1/2) ≤ n/2 then should be
modeled as

P(max
v∈[n]

Wv ≤ 0)

(Of course, other than intuition, there is no justification here that these two models
actually mimic each other.)

Observe that (Wv)v∈[n] is a joint normal distribution, each coordinate has variance n− 1

and pairwise covariance 1. So (Wv)v∈[n] has the same distribution as

√
n− 2(Z ′1, Z

′
2, . . . , Z

′
n) + Z ′0(1, 1, . . . , 1)

where Z ′0, . . . , Z ′n are iid standard normals.

Let Φ be the pdf and cdf of the standard normal N(0, 1).

Thus

P(max
v∈[n]

Wv ≤ 0) = P
(

max
i∈[n]

Z ′i ≤ −
Z ′0√
n− 2

)
=

1√
2π

∫ ∞
−∞

e−z
2/2Φ

(
−z√
n− 2

)n
dz

where the final step is obtained by conditioning on Z ′0. Substituting z = y
√
n, the above

quantity equals to

=

√
n

2π

∫ ∞
−∞

enf(y) dy where f(y) = −y
2

2
+ log Φ

(
y

√
n

n− 2

)
.

We can estimate the above integral for large n using the Laplace method (which can be
justified rigorously by considering Taylor expansion around the maximum of f). We have

f(y) ≈ g(y) := −y
2

2
+ log Φ (y)
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and we can deduce that

lim
n→∞

1

n
logP(max

v∈[n]
Wv ≤ 0) = lim

n→∞

1

n
log

∫
enf(y) dy = max g = log 0.6102 · · · .
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