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9 Concentration of measure

Recall that Chernoff bound allows to prove exponential tail bounds for sums of inde-
pendent random variables. For example, if Z is a sum of n Bernoulli random variables,
then

P(|Z − EZ| ≥ t
√
n) ≤ 2e−2t2/n.

As a matter of terminology (which is convenient though we will largely not use), random
variables Z that satisfy P(|Z| ≥ t) ≤ 2e−ct

2 for all t ≥ 0 and constant c > 0 are called
sub-gaussian. We usually are not too concerned about optimizing the constant c in the
exponent of bound.

In this chapter, we develop tools for proving similar sub-gaussian tail bounds for other
random variables that do not necessarily arise as a sum of independent random variables.

Here is the general principle:

A Lipschitz function of many independent random variables is con-
centrated.

We will prove the following important and useful result, known by several names: Mc-
Diarmid’s inequality, Azuma–Hoeffding inequality, and bounded differences
inequality.

Theorem 9.0.1 (Bounded differences inequality). Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be inde-
pendent random variables. Suppose f : Ω1 × · · · × Ωn → R satisfies

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ 1 (9.1)

whenever (x1, . . . , xn) and (x′1, . . . , x
′
n) differ on exactly one coordinate. Then the random

variable Z = f(X1, . . . , Xn) satisfies, for every λ ≥ 0,

P(Z − EZ ≥ λ) ≤ e−2λ2/n and P(Z − EZ ≤ −λ) ≤ e−2λ2/n.

In particular, we can apply the above inequality to f(x1, . . . , xn) = x1 + · · ·+xn to recover
the Chernoff bound. The theorem tells us that the window of fluctuation of Z has length
O(
√
n).

Example 9.0.2 (Coupon collector). Let s1, . . . , sn ∈ [n] chosen uniformly and indepen-
dently at random. Let

Z = |[n] \ {s1, . . . , sn}|.
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Then
EZ = n

(
1− 1

n

)n
∈
[
n

e
,
n− 1

e

]
.

Note that changing one of the s1, . . . , sn changes Z by at most 1, so we have

P
(
|Z − n/e| ≥ λ

√
n+ 1

)
≤ P

(
|Z − EZ| ≥ λ

√
n
)
≤ 2e−2λ2 .

Definition 9.0.3 (Lipschitz functions). Given two metric spaces (X, dX) and (Y, dY ), we
say that a function f : X → Y is C-Lipschitz if

dY (f(x), f(x′)) ≤ CdX(x, x′) for all x, x′ ∈ X.

Then (9.2) says that f : Ω1 × · · · × Ωn → R is 1-Lipschitz with respect to the Hamming
distance on Ω1 × · · · × Ωn.

Note that while it may be tempting to think about the cases Ωi = {0, 1}, it will be crucial
for us to consider more general Ωi for our applications.

Theorem 9.0.1 holds more generally allowing the bounded difference to depend on the
coordinate.

Theorem 9.0.4 (Bounded differences inequality). Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be inde-
pendent random variables. Suppose f : Ω1 × · · · × Ωn → R satisfies

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ ci (9.2)

whenever (x1, . . . , xn) and (x1, . . . , xn) differ only on the i-th coordinate. Then the random
variable Z = f(X1, . . . , Xn) satisfies, for every λ ≥ 0,

P(Z − EZ ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
and

P(Z − EZ ≤ −λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

We will prove these inequality using martingales.
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9.1 Martingales concentration inequalities

Definition 9.1.1. Amartingale is a random real sequence Z0, Z1, . . . such that for every
Zn, E|Zn| <∞ and

E[Zn+1|Z0, . . . , Zn] = Zn.

(To be more formal, we should talk about filtrations of a probability space . . . )

Example 9.1.2 (Random walks with independent steps). If (Xi)i≥0 is a sequence of
independent random variables with EXi = 0 for all i, then the partial sums Zn =

∑
i≤nXi

is a Martingale.

Example 9.1.3 (Betting strategy). Betting on a sequence of fair coin tosses. After round,
you are allow to change your bet. Let Zn be your balance after the n-th round. Then Zn
is always a martingale regardless of your strategy.

Originally, the term “martingale” referred to the betting strategy where one doubles the
bet each time until the first win and then stop betting. Then, with probability 1, Zn = 1

for all sufficiently large n. (Why does this “free money” strategy not actually work?)

The next example is especially important to us.

Example 9.1.4 (Doob martingale). Given some underlying random variables X1, . . . , Xn

(not necessarily independent, though they often are independent in practice), and a
function f(X1, . . . , Xn). Let Zi be the expected value of f after “revealing” (exposing)
X1, . . . , Xi, i.e.,

Zi = E[f(X1, . . . , Xn)|X1, . . . , Xi].

So Zi is the expected value of the random variable Z = f(X1, . . . , Xn) after seeing the
first i arguments, and letting the remaining arguments be random. Then Z0, . . . , Zn is
a martingale (why?). It satisfies Z0 = EZ (a non-random quantity) and Zn = Z (the
random variable that we care about), and thereby offering a way to interpolate between
the two.

Example 9.1.5 (Edge-exposure martingale). We can reveal the random graph G(n, p)

by first fixing an order on all unordered pairs of [n] and then revealing in order whether
each pair is an edge. For any graph parameter f(G) we can produce a martingale
X0, X1, . . . , X(n2)

where Zi is the conditional expectation of f(G(n, p)) after revealing
whether there are edges for first i pairs of vertices. See Figure 5 for an example.

Example 9.1.6 (Vertex-exposure martingale). Similar to the previous example, except
that we now first fix an order on the vertex set, and, at the i-th step, with 0 ≤ i ≤ n, we
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Figure 5: The edge-exposure martingale (left) and vertex-exposure martingale (right) for
the chromatic number of G(n, 1/2) with n = 3. The martingale is obtained by starting
at the leftmost point, and splitting at each branch with equal probability.

reveal all edges whose endpoints are contained in the first i vertices. See Figure 5 for an
example.

Sometimes it is better to use the edge-exposure martingale and sometimes it is better to
use the vertex-exposure martingale. It depends on the application. There is a trade-off
between the length of the martingale and the control on the bounded differences.

The main result is that a martingale with bounded differences must be concentrated.
The following fundamental result is called Azuma’s inequality or the Azuma–Hoeffding
inequality.

Theorem 9.1.7 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale satisfying

|Zi − Zi−1| ≤ 1 for each i ∈ [n].

Then for every λ > 0,
P(Zn − Z0 ≥ λ

√
n) ≤ e−λ

2/2.

Note that this is the same bound that we derived in Section 5 for Zn = X1 + · · ·Xn where
Xi ∈ {−1, 1} uniform and iid.

More generally, allowing different bounds on different steps of the martingale, we have
the following.
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Theorem 9.1.8 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale satisfying

|Zi − Zi−1| ≤ ci for each i ∈ [n].

For any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−λ2

2(c2
1 + · · ·+ c2

n)

)
.

The above formulations of Azuma’s inequality recovers the bounded differences inequality
Theorems 9.0.1 and 9.0.4 up to a (usually unimportant) constant in the exponent (de-
tails shortly). To obtain the exact statement of Theorem 9.0.4, we state the following
strengthening of Azuma’s inequality.

Theorem 9.1.9 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale such that, for
each i ∈ [n], conditioned on (Z0, . . . , Zi−1), the random variable Zi lies inside an interval
of length ci (the location of the interval may depend on Z0, . . . , Zi−1). Then for any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Remark 9.1.10. Applying the inequality to the martingale with terms −Zn, we obtain the
following lower tail bound:

P(Zn − Z0 ≤ −λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

And we can put them together as

P(|Zn − Z0| ≥ λ) ≤ 2 exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Lemma 9.1.11 (Hoeffding). Let X be a real random variable contained in an interval of
length `. Suppose EX = 0. Then

E[eX ] ≤ e`
2/8.

Proof. Suppose X ∈ [a, b] with a ≤ 0 ≤ b and b− a = `. Then since ex is convex, using a
linear upper bound on the interval [a, b], we have

ex ≤ b− x
b− a

ea +
x− a
b− a

eb, ∀x ∈ [a, b].

97



9 Concentration of measure Probabilistic Methods in Combinatorics — Yufei Zhao

Thus
EeX ≤ b

b− a
ea +

−a
b− a

eb.

Let p = −a/(b− a). then a = −p` and b = (1− p)`, we have

logEeX ≤ log
(
(1− p)e−p` + pe(1−p)`) = −p`+ log(1− p+ pe`).

Fix p ∈ [0, 1]. Let
ϕ(`) := −p`+ log(1− p+ pe`).

It remains to show that ϕ(`) ≤ `2/8 for all ` ≥ 0, which follows from ϕ(0) = ϕ′(0) = 0

and ϕ′′(`) ≤ 1/4 for all ` ≥ 0, as

ϕ′′(`) =

(
p

(1− p)e−p` + p

)(
1− p

(1− p)e−p` + p

)
≤ 1

4
,

since t(1− t) ≤ 1/4 for all t ∈ [0, 1].

Proof of Theorem 9.1.9. By adding a constant to the sequence, we may assume that Z0 =

0. Let
Xi = Zi − Zi−1

be the martingale difference. Let t ≥ 0. Then the hypothesis together with Lemma 9.1.11
imply that

E[etXi|Z0, . . . , Zi−1] ≤ et
2c2i /8.

Then the moment generating function satisfies

E[etZn ] = E
[
et(Xn+Zn−1)

]
= E

[
E
[
etXn

∣∣ Z0, . . . , Zn−1

]
etZn−1

]
= et

2c2n/8E[etZn−1 ].

Iterating, we obtain
E[etZn ] ≤ et

2(c21+···c2n)/8.

By Markov,
P(Zn ≥ λ) ≤ e−tλE[etZn ] ≤ e−tλ+ t2

8
(c21+···c2n).

Setting t = 4λ/(c2
1 + · · ·+ c2

n) yields the theorem.

Let us use Azuma’s inequality to prove the bounded difference inequality (Theorem 9.0.4),
whose statement is copied below:

Let Z0, Z1, . . . , Zn be a martingale such that, for each i ∈ [n], conditioned on
(Z0, . . . , Zi−1), the random variable Zi lies inside an interval of length ci (the
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location of the interval may depend on Z0, . . . , Zi−1). Then for any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Proof of the Theorem 9.0.4. Consider the Doob martingale Zi = E[Z|X1, . . . , Xi].

By the Lipschitz condition, we see that for every i ∈ [n] and fixed x1 ∈ Ω1, . . . , xi−1 ∈ Ωi−1,
we have

max
xi∈Ωi

f(x1, . . . , xi−1, xi, Xi+1, . . . , Xn)− min
xi∈Ωi

f(x1, . . . , xi−1, xi, Xi+1, . . . , Xn) ≤ ci

for every possible Xi+1, . . . , Xn, so that taking expectation of these random values shows
that, conditioned on the values of X1, . . . , Xi−1, there is an interval (possibly depending
on X1, . . . , Xi−1) of length ci that Zi lies in.

Since Z0 = EZ and Zn = Z, the desired bound follows from Azuma’s inequality (Theo-
rem 9.1.9).3

9.2 Chromatic number of random graphs

9.2.1 Concentration of chromatic number

Even before Bollobás (1988) showed that χ(G(n, 1/2)) ∼ n
2 log2 n

whp (Theorem 8.3.3),
using the bounded difference inequality, it was already known that the chromatic number
of a random graph must be concentrated in a ω(

√
n) window around its mean. The

following application shows that one can prove concentration around the mean without
even knowing where is the mean!

Theorem 9.2.1 (Shamir and Spencer 1987). For every λ ≥ 0, Z = χ(G(n, p) satisfies

P(|Z − EZ| ≥ λ
√
n− 1) ≤ 2e−2λ2 .

Proof. Let V = [n], and consider each vertex labeled graph as an element of Ω2×· · ·×Ωn

where Ωi = {0, 1}i−1 and its coordiantes correspond to edges whose larger coordinate is i
(cf. the vertex-exposure martingale Example 9.1.6). If two graphs G and G′ differ only
in edges incident to one vertex v, then |χ(G)− χ(G′)| ≤ 1 since, given a proper coloring
of G using χ(G) colors, one can obtain a proper coloring of G′ using χ(G) + 1 colors by
using a new color for v. Theorem 9.0.4 implies the result.

3We are cheating somewhat here, since multiple instance of (X1, . . . , Xi) can correspond to the same
(Z0, . . . , Zi). To be more correct, we should restate Theorem 9.1.9 instead of a filtration based on the
Doob martingale.
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Remark 9.2.2 (Non-concentration of the chromatic number). Recently, a surprising break-
through of Heckel (2019+) showed that the χ(G(n, 1/2)) is not concentrated on any in-
terval of length n1/4−ε for any constant ε > 0. This was the opposite of what most experts
believed in. Given the new realization, it seems reasonable to suspect that the length of
the window of concentrations fluctuates between n1/4+o(1) to n1/2+o(1) depending on n.

9.2.2 Clique number, again

Previously in Section 8.3, we used Janson inequalities to prove the following exponentially
small bound on the probability that G(n, 1/2) has small clique number. This was a crucial
step in the proof of Bollobás’ theorem (Theorem 8.3.3) that χ(G(n, 1/2)) ∼ n/(2 log2 n)

whp. Here we give a different proof using the bounded difference inequality instead of
Janson inequalities. The proof below in fact was the original approach of Bollobás (1988).

Theorem 9.2.3 (Same as Theorem 8.3.2). Let k0 = k0(n) ∼ 2 log2 n be the largest
positive integer so that

(
n
k0

)
2−(k02 ) ≥ 1. Then

P(ω(G(n, 1/2)) < k0 − 3) = e−n
2−o(1)

.

A naive approach might be to estimate the number of k-cliques in G (this is the approach
taken with Janson inequalities. Here, instead, we use a very clever and non-obvious choice
of a Lipschitz function of graphs.

Proof. Let k = k0 − 3. Let Y = Y (G) be the maximum number of edge-disjoint set of
k-cliques in G. Then as a function of G, Y changes by at most 1 if we change G by one
edge. (Note that the same does not hold if we change G by one vertex, e.g., when G

consists of many k-cliques glued along a common vertex.)

So by the bounded differences inequality, for G ∼ G(n, 1/2),

P(ω(G) < k) = P(Y = 0) ≤ P(Y − EY ≤ −EY ) ≤ exp

(
−2(EY )2(

n
2

) )
. (9.3)

It remains to show that EY ≥ n2−o(1). Create an auxiliary graph H whose vertices are
the k-cliques in G, with a pair of k-cliques adjacent if they overlap in at least 2 vertices.
Then Y = α(H). We would like to lower bound the independence number of this graph
based on its average degree. Here are two ways to proceed:

1. Recall the Caro–Wei inequality (Corollary 2.3.5): for every graph H with average
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degree d, we have

α(H) ≥
∑

v∈V (H)

1

1 + dv
≥ |V (H)|

1 + d
=

|V (H)|2

|V (H)|+ 2 |E(H)|
.

2. Let H ′ be the induced subgraph obtained from H by keeping every vertex indepen-
dently with probability q. We have

α(H) ≥ α(H ′) ≥ |V (H ′)| − |E(H ′)| .

Taking expectations of both sides, and noting that E |V (H ′)| = q |V (H)| and
E |E(H ′)| = q2 |E(H)| by linearity of expectations, we have

α(H) ≥ qE |V (H)| − q2 |E(H)| for every q ∈ [0, 1].

Provided that |E(H)| ≥ |V (H)| /2, we can take q = |V (H)| /(2 |E(H)|) ∈ [0, 1] and
obtain

α(H) ≥ |V (H)|2

4 |E(H)|
if |E(H)| ≥ 1

2
|V (H)| .

(This method allows us to recover Turán’s theorem up to a factor of 2, whereas the
Caro–Wei inequality recovers Turán’s theorem exactly. For the present application,
we do not care about these constant factors.)

We have, with probability 1− o(1), the number of k-cliques |V (H)| satisfies

|V (H)| ∼ µ := E |V (H)| =
(
n

k

)
2−(k2) ≥ n3−o(1)

and the number of pairs of edge-overlapping k-cliques |E(H)| satisfies

E |E(H)| =:
∆

2
∼ µ2k4

2n2
� µ

(details again omitted; this is the same first and second moment calculation as in Sec-
tion 4.3 and Theorem 8.3.2.) Thus, with probability 1− o(1), we can apply either of the
above lower bounds on independent sets to obtain

EY & E
µ2

|E(H)|
&
µ2

∆
∼ n2

k4
.
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Thus by (9.3), we obtain

P(ω(G) < k) ≤ exp

(
−2(EY )2(

n
2

) )
≤ exp

(
−Ω

(
n2

k8

))
= exp

(
−Ω

(
n2

(log n)8

))
.

9.2.3 Chromatic number of sparse random graphs

Let us show that G(n, p) is concentrated on a constant size window if p is small enough.

Theorem 9.2.4 (Shamir and Spencer 1987). Let α > 5/6 be fixed. Then for p < n−α,
χ(G(n, p)) is concentrated in four values with probability 1 − o(1), i.e., there exists u =

u(n, p) such that, as n→∞,

P(u ≤ χ(G(n, p)) ≤ u+ 3) = 1− o(1).

Proof. Let ε = εn > 0 and ε → 0 (we’ll later choose it to be arbitrarily small). Let
u = u(n, p, ε) be the least integer so that

P(χ(G(n, p)) ≤ u) > ε.

Now we make a clever choice of a random variable.

Let G ∼ G(n, p). Let Y = Y (G) denote the minimum size of a subset S ⊂ V (G)

such that G− S is u-colorable. Note that Y changes by at most 1 if we change the edges
around one vertex of G. Thus, by applying Theorem 9.0.1 with respect to vertex-exposure
(Example 9.1.6), we have

P(Y ≤ EY − λ
√
n) ≤ e−2λ2

and P(Y ≥ EY + λ
√
n) ≤ e−2λ2 .

We choose λ = λ(ε) > 0 so that e−2λ2 = ε.

First, we use the lower tail bound to show that EY must be small. We have

e−2λ2 = ε < P(χ(G) ≤ u) = P(Y = 0) = P(Y ≤ EY − EY ) ≤ exp

(
−2(EY )2

n

)
so

EY ≤ λ
√
n.
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Next, we apply the upper tail bound to show that Y is rarely large. We have

P(Y ≥ 2λ
√
n) ≤ P(Y ≥ EY + λ

√
n) ≤ e−2λ2 = ε.

Each of the following three events occur with probability at least 1− ε, for large enough
n,

• By the above argument, there is some S ⊂ V (G) with |S| ≤ 2λ
√
n and G− S may

be properly u-colored.

• By the next lemma, one can properly 3-color G[S].

• χ(G) ≥ u (by the minimality of u at the beginning of the proof).

Thus, with probability at least 1− 3ε, all three events occur, and so we have u ≤ χ(G) ≤
u+ 3.

Lemma 9.2.5. Fix α > 5/6 and C. Let p ≤ n−α. Then with probability 1− o(1) every
subset of at most C

√
n vertices of G(n, p) can be properly 3-colored.

Proof. Let G ∼ G(n, p). Assume that G is not 3-colorable. Choose minimum size T ⊂
V (G) so that the induced subgraph G[T ] is not 3-colorable.

We see that G[T ] has minimum degree at least 3, since if degG[T ](x) < 3, then T − x

cannot be 3-colorable either (if it were, then can extend coloring to x), contradicting the
minimality of T .

Thus G[T ] has at least 3|T |/2 edges. The probability that G has some induced subgraph
on t ≤ C

√
n vertices and ≥ 3t/2 edges is, by a union bound, (recall

(
n
k

)
≤ (ne/k)k)

≤
C
√
n∑

t=4

(
n

t

)( (t
2

)
3t/2

)
p3t/2 ≤

C
√
n∑

t=4

(ne
t

)t(te
3

)3t/2

n−3tα/2

≤
C
√
n∑

t=4

(
O(n1−3α/2

√
t)
)t
≤

C
√
n∑

t=4

(
O(n1−3α/2+1/4)

)t
the sum is o(1) provided that α > 5/6.

Remark 9.2.6. Theorem 9.2.4 was subsequently improved (by a refinement of the above
techniques) by Łuczak (1991) and Alon and Krivelevich (1997), who showed two-point
concentration for all α > 1/2.
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9.3 Isoperimetric inequalities: a geometric perspective

The bounded differences inequality (Theorem 9.0.1) tells that if f : {0, 1}n → R is 1-
Lipschitz (with respect to the Hamming distance on {0, 1}n), it must be concentrated
around its mean:

P(|f − Ef | ≥ λ
√
n) ≤ 2e−2λ2 .

Given that the maximum possible variation in f is n, the above concentration inequality
says that f is almost constant, which should be somewhat counterintuitive.

It turns out that similar phenomenon occurs in other spaces not just the Hamming cube.
In fact, it is really a general high dimensional geometric phenomenon. In this section, we
explore this concentration of phenomenon from a geometric perspective, and explain how
it relates to isoperimetric inequalities.

Recall the classic isoperimetric theorem in Rn It says that among all subset of Rn of given
volume, the ball has the smallest surface volume. (The word “isoperimetric” refers to
fixing the perimeter; equivalently we fix the surface area and ask to maximize volume.)

Here is a slightly stronger formulation. Given a metric space (X, dX) and a set A ⊂ X,
we write

At := {x ∈ X : dX(x,A) := min
a∈A

dX(x, a) ≤ t} (9.4)

for set of all points within distance t from A. One can visualize by “expanding” A by
distance t.

Theorem 9.3.1 (Isoperimetric inequality in Euclidean space). Let A ⊂ Rn be a measur-
able set, and let B ⊂ Rn be a ball vol(A) = vol(B). Then, for all t ≥ 0,

vol(At) ≥ vol(Bt).

Remark 9.3.2. One can recover the classic inequality on surface volumes voln−1(δA) ≥
voln−1(δB) by noting that

voln−1(δA) =
d

dt

∣∣
t=0

voln(At). lim
t→0

vol(At)− vol(A)

t
≥ lim

t→0

vol(Bt)− vol(B)

t
= voln−1(δB).

We have an analogous result in the {0, 1}n with respect to Hamming distance.In Hamming
cube, Harper’s theorem gives the exact result. Below, for A ⊂ {0, 1}n, we write At as
in (9.4) for X = {0, 1}n and dX being the Hamming distance.
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Theorem 9.3.3 (Isoperimetic inequality in the Hamming cube; Harper 1966). Let A ⊂
{0, 1}n. Let B ⊂ {0, 1}n be a Hamming ball with |A| ≥ |B|. Then for all t ≥ 0,

|At| ≥ |Bt|.

Remark 9.3.4. The above statement is tight when A has the same size as a Hamming
ball, i.e., when |A| =

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
for some integer k. Actually, more is true. For

any value of |A| and t, the size of At is minimized by taking A to be an initial segment of
{0, 1}n according to the simplicial ordering : first sort by Hamming weight, and for ties,
sort by lexicographic order.

It is worth examining the sizes of the Hamming ball as a function of its radius.

Let
B(r) = {x ∈ {0, 1}n : weight(x) ≤ r}

denote the Hamming ball of radius r. Using the central limit theorem, we find that, for
every fixed z ∈ R, as n→∞.

1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ =
1

2n

∑
0≤i≤n

2
+ z
√
n

2

(
n

i

)
∼ PZ∼N(0,1)(Z ≤ t) =

1√
2π

∫ z

0

e−x
2/2 dx.

Also, by Chernoff bound, we have

1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ ≤ e−z
2/2 if z ≤ 0

and
1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ ≥ 1− e−z2/2 if z ≥ 0.

Combined with the isoperimetic inequality on the cube, we obtain the following surprising
consequence. Suppose we start with just half of the cube, and then expand it by a bit
(recall that the diameter of the cube is n, and we will be expanding it by o(n)), then
resulting expansion occupies nearly all of the cube.

Theorem 9.3.5. Let t > 0. For every A ⊂ {0, 1}n with |A| ≥ 2n−1, we have

|At| > (1− e−2t2/n)2n.

Proof. Let B = {x ∈ {0, 1}n : weight(x) < n/2}, so that |B| ≤ 2n−1 ≤ |A|. Then by
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Harper’s theorem (Theorem 9.3.3),

|At| ≥ |Bt| = |{x ∈ {0, 1}n : weight(x) < n/2 + t}| > (1− e−2t2/n)2n

by the Chernoff bound.

In fact, using the above, we can deduce that even if we start with a small fraction (e.g.,
1%) of the cube, and expand it slightly, then we would cover most of the cube.

Theorem 9.3.6. Let ε > 0. If A ⊂ {0, 1}n with |A| ≥ ε2n, then∣∣∣A√
2 log(1/ε)n

∣∣∣ ≥ (1− ε)2n.

First proof via isoperimetric inequality. Let t =
√

log(1/ε)n/2 so that e−2t2/n = ε. Ap-
plying Theorem 9.3.5 to A′ = {0, 1}n \At, we see that |A′| < 2n−1 (or else |A′t| > (1−ε)2n,
so A′t would intersect A, which is impossible since the distance between A and A′ is greater
than t). Thus |At| ≥ 2n−1, and then applying Theorem 9.3.5 yields |A2t| ≥ (1− ε)2n.

Let us give another proof of Theorem 9.3.6 without using Harper’s exact isoperimetric
theorem in the Hamming cube, and instead use the bounded differences inequality that
we proved earlier.

Second proof via the bounded differences inequality. Pick random x ∈ {0, 1}n and letX =

dist(x,A). Note that X changes by at most 1 if a single coordinate of x is changed.
Applying the bounded differences inequality, Theorem 9.0.1, we have the lower tail

P(X − EX ≤ −t) ≤ e−2t2/n.

We have X = 0 if and only if x ∈ A, so

ε ≤ P(x ∈ A) = P(X − EX ≤ −EX) ≤ e−2(EX)2/n.

Thus

EX ≤
√

log(1/ε)n

2
.

Now we apply the upper tail

P(X − EX ≥ t) ≤ e−2t2/n

with
t =

√
2(log(1/ε)n ≥ 2EX
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to yield

P(x /∈ At) = P(X > t) < P

(
X ≥ EX +

√
log(1/ε)n

2

)
≤ ε.

The above expansion/isoperimetry properties turn out to be actually equivalent to the
concentration of Lipschitz function phenomenon we discussed earlier, as we show next.
Milman recognized the importance of this concentration of measure phenomenon,
which he heavily promoted in the 1970’s. The subject was have been since then extensively
developed. It plays a central role in probability theory, the analysis of Banach spaces,
and it also has been influential in theoretical computer science.

Theorem 9.3.7 (Equivalence between notions of concentration of measure). Let t, ε ≥ 0.
In a probability space (Ω,P) equipped with a metric. The following are equivalent:

1. (Expansion/approximate isoperimetry) If A ⊂ Ω with P(A) ≥ 1/2, then

P(At) ≥ 1− ε.

2. (Concentration of Lipschitz functions) If f : Ω → R is 1-Lipschitz and m ∈ R
satisfies P(f ≥ m) ≥ 1/2 and P(f ≤ m) ≥ 1/2 (i.e., m is a median of f), then

P(f > m+ t) ≤ ε.

Remark 9.3.8. There always exists a median, but it might not be unique. For example,
for the uniform distribution on {0, 1}, any real number in the interval [0, 1] is a valid
median.

Proof. (a) =⇒ (b): Let A = {x ∈ Ω : f(x) ≤ m}. So P(A) ≥ 1/2. Since f is 1-Lipschitz,
we have f(x) ≤ m+ t for all x ∈ At. Thus by (a)

P(f > m+ ε) ≤ P(At) ≤ ε.

(b) =⇒ (a): Let f(x) = distance(x,A) and m = 0. Since P(f ≤ 0) = P(A) ≥ 1/2 and
P(f ≥ 0) = 1, m is a median. Also f is 1-Lipschitz. So by (b),

P(At) = P(f > m+ t) ≤ ε.

Informally, we say that a space (or rather, a sequence of spaces), has concentration of
measure if ε decays rapidly as a function of t in the above theorem (the notion of “Lévy
family” makes this precise). Earlier we saw that the Hamming cube exhibits has con-
centration of measure. Other notable spaces with concentration of measure include the
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sphere, Gauss space, orthogonal and unitary groups, postively-curved manifolds, and the
symmetric group.

Mean versus median. For a sub-gaussian random variable, very tight concentration
(e.g., sub-gaussian), one can deduce that the mean and the median must be very close to
each other.

Indeed, suppose there exist constants C, σ > 0 such that P(At) ≤ Ce−(t/σ)2 for all A with
P(A) ≥ 1/2 and t > 0. Then for all 1-Lipschitz function f on Ω and m a median of f ,
one has

|Ef −m| ≤ E|f −m| =
∫ ∞

0

P(|f −m| ≥ t) dt ≤
∫ ∞

0

2Ce−(t/σ)2 dt = C
√
πσ

It follows that, for all t ≥ 0,

P(f ≥ Ef + (t+ C
√
π)σ) ≥ P(f ≥ m+ tσ) ≤ Ce−(t/σ)2

and
P(f ≤ Ef − (t+ C

√
π)σ) ≥ P(f ≤ m− tσ) ≤ Ce−(t/σ)2 .

Similarly, if we know that P(|f − Ef | ≥ t) ≤ Ce−(t/σ) for all t > 0, then P(|f − Ef | ≥
t) < 1/2 for all t >

√
log(2C)σ, from which we deduce that every median m satisfies

|Ef −m| ≤
√

log(2C)σ.

There can indeed exist an order σ difference between the mean and the median in the
setup above. For example, treating the cube as {−1, 1}n, and taking

f(x1, . . . , xn) = max{x1 + · · ·+ xn, 0},

we see that by the central limit theorem

lim
n→∞

|Ef −median(f)|√
n

= EZ∼N(0,1)[max{Z, 0}] =
1√
2π
.

9.3.1 The sphere and Gauss space

We discuss analogs of the concentration of measure phenomenon in high dimensional
geometry. This is rich and beautiful subject. An excellent introductory to this topic is
the survey An Elementary Introduction to Modern Convex Geometry by Ball (1997).

Recall the isoperimetric inequality in Rn says:

If A ⊂ Rn has the same measure as ball B, then vol(At) ≥ vol(Bt) for all
t ≥ 0.
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Analogous exact isoperimetric inequalities are known in several other spaces. We already
saw it for the boolean cube (Theorem 9.3.3). The case of sphere and gaussian space are
particularly noteworthy. The following theorem is due to Lévy.

Theorem 9.3.9 (Spherical isopeimetric inequality). Inside Sn−1 (equipped with the nat-
ural measure and distance), let A be a subset and B a spherical cap with voln−1(A) =

voln−1(B). Then for all t ≥ 0,

voln−1(At) = voln−1(Bt).

Suppose C is a hemisphere in Sn−1 ⊂ Rn. Let us estimate voln−1(C). As in the dia-
gram below, in the planar cross-section, the chord of length t subtends an angle of θ =

2 arcsin(t/2), so the vertical bolded segment has length cos θ = 1− 2 sin2(θ/2) = 1− t2/2.

t

1− t2

2

C Ct

By considering the fraction of the ball subtended by Ct (i.e., the shaded wedge-sector
above), which is contained in the smaller dashed ball or radius 1− t2/2, we see that

1− voln−1(Ct)

voln−1(Sn−1)
=

voln−1(Ct)

voln−1(Sn−1)
≤
(

1− t2

2

)n
≤ e−nt

2/2.
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Corollary 9.3.10 (Concentration of measure on a sphere). There exists some constant
c > 0 so that

• If A ⊆ Sn−1 has voln−1(A)/ voln−1(Sn−1) ≥ 1/2, then

voln−1(At)

voln−1(Sn−1)
≥ 1− e−t2n/2.

• If f : Sn−1 → R is 1-Lipschitz, then there is some real m (e.g., a median) so that

P(|f −m| > t) ≤ 2e−nt
2/2.

Second statement may be interpreted as “every Lipschitz function on a high dimensional
sphere is nearby constant almost everywhere”

Another related setting is theGauss space, which is Rn equipped with the the probability
measure induced by the Gaussian random vector whose coordinates are n iid standard
normals, i.e., the normal random vector in Rn with covariance matrix In. Its probability
density function (2π)−ne−|x|

2/2 for x ∈ Rn. Let λ denote the Gaussian measure on Rn.
The metric on Rn is the usual Euclidean metric.

What would an isoperimetric inequality in Gauss space look like?

A naive guess, inspired by Rn, may be that disks minimize perimeter. But this is actually
not the case. It turns out that the Hamming cube is a better model for the Gauss space.
Indeed, consider {−1, 1}mn, where both m and n are large. Let us group the coordinates
of {−1, 1}mn into block of length m. The sum of entries in each block (after normalizing
by
√
m) approximates normal random variable by the central limit theorem.

In the Hamming cube, Harper’s theorem tells us Hamming balls are isoperimetric optimiz-
ers. Since a Hamming ball in {−1, 1}mn is given by all points whose sum of coordinates
is below a certain threshold, we should look at the analogous subset in the Gauss space,
which would then consist of all points whose sum of coordinates is below a certain thresh-
old.

Note that the Gaussian measure is radially symmetric. So the above heuristic (which can
be made rigorous) suggests that for the Gaussian isoperimetric inequality, we should look
for half-spaces, i.e., points on one side of some hyperplane. This is indeed the case, as
first shownindependently by Borell (1975) and Sudakov and Tsirel’son (1974).

Theorem 9.3.11 (Gaussian isoperimetric inequality). If A,H ⊂ Rn, H a half-space, and
λ(A) = λ(H), then λ(At) ≥ λ(Ht) for all t ≥ 0, where λ is the Gauss measure.
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Consequently, if P(A) ≥ 1/2, then P(At) ≤ P(Z1 > t) ≤ e−t
2/2. And, if f : Rn → R is

1-Lipschitz, and z is a vector of iid standard normals, then X = f(z) satisfies

P(|X − EX| ≥ t) ≤ 2e−t
2/2

The sphere as approximately a sum of independent Gaussians. The gauss space
is a nice space to work with because a standard normal vector simultaneously possesses
two useful properties (and it is essentially the only such random vector to have both
properties):

(a) Rotational invariance

(b) Independence of coordinates

Furthermore, the length of a random gaussian vector is given by
√
Z2

1 + · · ·+ Z2
n for iid

Z1, . . . , Zn ∈ N(0, 1), which is concentrated around
√
n (e.g., by a straight forward adap-

tation of Chernoff bound. In fact, since
√
n+O(

√
n) =

√
n+O(1), the length of gaussian

vector has a O(1)-length window of typical fluctation). So most of the distribution in the
gauss space lies lie to a sphere of radius

√
n. Due to rotational invariance, we see that

a gaussian distribution approximates the uniform distribution on sphere of radius
√
n in

high dimensions. Random gaussian vectors give us a convenient method to analyze the
concentration of measure phenomenon on the sphere. (It should now be satisfying to
see how half-spaces in the gauss space intersect the sphere in a spherical cap, and both
objects are isoperimetric optimzers in their respective spaces).

9.3.2 Johnson–Lindenstrauss Lemma

The next theorem is a powerful in many areas. For example, it is widely used in computer
science as a means of dimension reduction.

Theorem 9.3.12 (Johnson and Lindenstrauss 1982). Let s1, . . . , sN ∈ Rn. Then there
exists s′1, . . . , s′N ∈ Rm where m = O(ε−2 logN) and such that, for every i 6= j,

(1− ε)|si − sj| ≤ |s′i − s′j| ≤ (1 + ε)|si − sj|.

Remark 9.3.13. Here m is optimal up to a constant factor (Larsen and Nelson 2017).

The theorem is proved by obtaining the new points s′j ∈ Rm by taking a projection onto
a uniform random m-dimensional subspace (and the scaling by

√
n/m). We would like

to know that these projects roughly preserve the length of vectors. Once we have the
following lemma, set s′i =

√
m/nPsi, and we can apply the lemma to z = si−sj for every
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pair (i, j) and apply the union bound to use that, with probability at least 1−CN2e−cε
2m,

one has (1− ε)|si − sj| ≤ |s′i − s′j| ≤ (1 + ε)|si − sj| for all (i, j).

Lemma 9.3.14 (Random projection). Let P be a projection from Rn onto a random
m-dimensional subspace. Let z ∈ Rn (fixed) and y = Pz. Then

E[|y|2] =
m

n
|z|2

and, with probability ≥ 1− 2e−cε
2m for some constant c > 0,

(1− ε)
√
m

n
|z| ≤ |y| ≤ (1 + ε)

√
m

n
|z| .

Proof. By rescaling we may assume that |z| = 1.

The distribution of Y = |y| does not change if we instead fix P to be the orthogonal pro-
jection onto the subspace spanned by the first m coordinate vectors, and z vary uniformly
over the unit sphere.

Writing z = (z1, . . . , zn), by symmetry we have E[z2
1 ] = · · · = E[z2

n]. Since z2
1 +· · ·+z2

n = 1,
we have E[z2

i ] = 1/n for each i. Thus

E[Y 2] = E[z2
1 + · · ·+ z2

m] =
m

n
.

Since the map z 7→ |y| is 1-Lipschitz, by Lévy concentration (Corollary 9.3.10),

P (|Y − EY | ≥ t) ≤ 2e−nt
2/2, for all t ≥ 0.

In particular, we have that

E[Y 2]− (EY )2 = VarY =

∫ ∞
0

P
(
|Y − EY |2 ≥ t

)
dt ≤

∫ ∞
0

2e−nt/2 dt =
4

n
.

So √
m− 4

n
≤ EY ≤

√
m

n
.

This implies that, for some constants c > 0,

P
(∣∣∣∣Y −√m

n

∣∣∣∣ ≥ t

)
≤ 2e−cnt

2

, for all t ≥ 0.

Setting t = ε
√
m/n yields the result.
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A cute application of Johnson–Lindenstrauss (this was a starred homework exercise where
you were asked to prove it using the Chernoff bound).

Corollary 9.3.15. There is a constant c > 0 so that for every positive integer m, there
is a set of ecε2m points in Rm whose pairwise distances are in [1− ε, 1 + ε].

Proof. Applying Theorem 9.3.12 to the the N coordinate vectors in RN yields a set of N
points in Rm for m = O(ε−2 logN) with pairwise distances in [1− ε, 1 + ε].

9.4 Talagrand inequality

9.4.1 Convex Lipschitz functions of independent random variables

Problem 9.4.1. Let V be a fixed d-dimensional subspace. Let x ∼ Unif{−1, 1}n. How
well is dist(x, V ) concentrated?

Let P = (pij) ∈ Rn×n be the matrix giving the orthogonal projection onto V ⊥. We have
trP = dimV ⊥ = n− d. Then

dist(x, V )2 = |x · Px| =
∑
i,j

xixjpij.

So
E[dist(x, V )2] =

∑
i

pii = trP = n− d.

How well is dist(x, V ) concentrated around
√
n− d?

We say that a random variable X is K-subgaussian if

P(|X − EX| ≥ t) ≤ 2e−t
2/K2

.

Note that a K-subgaussian random variable typically has O(K)-fluctuation around its
mean.

Let us start with some examples.

If V is some coordinate subspace, then dist(x, V ) is a constant not depending on x.

If V = (1, 1, . . . , 1)⊥, then dist(x, V ) = |x1 + · · · + xn|/
√
n which converge |Z| for Z ∼

N(0, 1). In particular, it is O(1)-subgaussian.

More generally, if for a hyperplane V = α⊥ for some unit vector α = (α1, . . . , αn) ∈ Rn,
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one has dist(x, V ) = |α · x|. Note that flipping xi changes |α · x| by at most 2|αi|. So So
the bounded differences inequality Theorem 9.0.4, for every t ≥ 0,

P(|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2 exp

(
−2t2

4(α2
1 + · · ·+ α2

n)

)
≤ 2e−t

2/2.

So again dist(x, V ) is O(1)-subgaussian.

What about higher codimensional subspaces V ? Then

dist(x, V ) = sup
α∈V ⊥
|α|=1

|α · x| .

It is not clear how to apply the bounded difference inequality to all such α in the above
supremum simultaneously.

On the other hand, if we were to ignore the α’s and simply apply the bounded difference
inequality to the function x ∈ {−1, 1}n 7→ dist(x, V ), then, since this function is 2-
Lipschitz (with respect to Hamming distance), we obtain

P (|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2e−nt
2/2,

showing that dist(x, V ) isO(
√
n)-subgaussian—but this is a pretty bad result, as |dist(x, V )| ≤√

n (half the length of the longest diagonal of the cube).

Perhaps the reason why the above bound is so poor is that the bounded difference in-
equality is measuring distance in {−1, 1}n using the Hamming distance (`1) whereas we
really care about the Euclidean distance (`2).

Instead of sampling x ∈ {−1, 1}n, if we had taking x to be a uniformly random point on
the radius

√
n sphere in Rn (which contains {−1, 1}n), then Lévy concentration would

imply that

Px∼Uniform(
√
nSn−1)(|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2e−t

2/2.

So dist(x, V ) is O(1)-subgaussian if x is chosen from the radius
√
n sphere. Perhaps a

similar bound holds when x is chosen from {−1, 1}n?

Talagrand (1995) developed a powerful inequality that allows us to answer the above
question. The most general form of Talagrand’s inequality can be somewhat hard to
grasp at first, though it has important combinatorial consequences. We begin with more
concrete geometric special cases.
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Theorem 9.4.2. Let V be a fixed d-dimensional subspace in Rn. For uniformly random
x ∈ {−1, 1}n, one has

P(| dist(x, V )−
√
n− d| ≥ t) ≤ 2e−ct

2

where c > 0 is some constant.

Previously, the bounded differences inequality tells us that a Lipschitz function on {−1, 1}n
is O(

√
n)-subgaussian.

Talagrand inequality tells us that a convex Lipschitz function in Rn is O(1)-subgaussian
when restricted to the boolean cube. We give the precise statement below. We omit
the proof of Talagrand’s inequality (see Alon–Spencer textbook or Tao’s blog post) and
instead focus on explaining the theorem and how to apply it.

Below dist(·, ·) means Euclidean distance. And At = {x : dist(x,A) ≤ t}.

Theorem 9.4.3 (Talagrand). Let A ⊂ Rn be convex, and let x ∼ Unif{0, 1}n. Then for
any t > 0,

P(x ∈ A)P(dist(x,A) ≥ t) ≤ e−ct
2

where c > 0 is some absolute constant.

Remark 9.4.4. (1) Note that A is a convex body in Rn and not simply a set of points in
A. It may be useful to think of A as the convex hull of a set of points in {−1, 1}n.
Then distance to A is not the distance to these vertices of the boolean cube, but
rather distance to the convex body A.

(2) The bounded differences inequality gives us an upper bound of the form e−ct
2/n,

which is much better than Talagrand’s bound.

Example 9.4.5 (Talagrand’s inequality fails for nonconvex sets). Let

A =
{
x ∈ {0, 1}n : wt(x) ≤ n

2
−
√
n
}

(here A is a discrete set of points and not their convex hull). Then for every y ∈ {0, 1}n
with wt(y) ≥ n/2, one has dist(y, A) ≥ n1/4. Using the central limit theorem, we have,
for some constant c > 0 and sufficiently large n, for x ∼ Uniform({−1, 1}n), P(x ∈ A) ≥ c

and P(wt(x) ≥ n/2) ≥ 1/2, so the above inequality is false for t = n1/4.

By an argument similar to our proof of Theorem 9.3.7 (the equivalence of notions of
concentration of measure), one can deduce the following consequence.
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Corollary 9.4.6. Let f : Rn → R be convex and 1-Lipschitz (with respect to Euclidean
distance on Rn). Then for any r ∈ R and t > 0, for x ∼ Unif{0, 1}n

P(f(x) ≤ r)P(f(x) ≥ r + t) ≤ e−ct
2

.

where c > 0 is some absolute constant.

Remark 9.4.7. The proof below shows that the assumption that f is convex can be weak-
ened to f being quasiconvex, i.e., {f ≤ a} is convex for every a ∈ R.

The versions of Talagrand inequality, Theorem 9.4.3 and Corollary 9.4.6, are equivalent:

• Theorem 9.4.3 implies Corollary 9.4.6: take A = {x : f(x) ≤ r}. We have f(x) ≤
r+ t whenever dist(a,A) ≤ t since f is 1-Lipschitz. So P(f(x) ≤ r) = P(x ∈ A) and
P(f(x) ≥ r + t) ≤ P(dist(x,A) ≥ t).

• Corollary 9.4.6 implies Theorem 9.4.3: take f(x) = dist(x,A) which is convex since
A is convex.

Let us write MX to be a median for the random variable X, i.e., a non-random real so
that P(X ≥MX) ≥ 1/2 and P(X ≤MX) ≥ 1/2.

Corollary 9.4.8. Let f : Rn → R be convex and 1-Lipschitz (with respect to Euclidean
distance on Rn). Let x ∼ Unif({0, 1}n). Then

P(|f(x)−Mf(x)| ≥ t) ≤ 2e−ct
2

where c > 0 is an absolute constant.

Proof. Setting r = Mf(x) in Corollary 9.4.6 yields

P(f(x) ≥Mf(x) + t) ≤ 2e−ct
2

,

and setting r = Mf(x) in Corollary 9.4.6 yields

P(f(x) ≥Mf(x)− t) ≤ 2e−ct
2

.

Putting the two inequalities together, and changing the constant c, yields the corollary.

As an immediate corollary, we deduce Theorem 9.4.2 regarding the distance from a random
point x ∈ {−1, 1}n to a d-dimensional subspace. The above corollary shows that dist(x, V )

(which is a convex 1-Lipschitz function of x ∈ Rn) is O(1)-subgaussian, which immediately
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implies the result (see Lemma 9.3.14 for an example of how to argue the omitted step
where we replaced MX by EX and then by (EX2)1/2).

Example 9.4.9 (Operator norm of a random matrix). Let A be a random matrix whose
entries are uniform iid from {−1, 1}. Viewing A 7→ ‖A‖op as a function Rn2 → R, we
see that it is convex (since the operator norm is a norm) and 1-Lipschitz (using that
‖·‖op ≤ ‖·‖HS, where the latter is the Hilbert–Schmidt norm, also known as the Frobe-
nius norm, i.e., the `2-norm of the matrix entries). It follows by Talagrand’s inequality
(Corollary 9.4.8) that f is O(1)-subgaussian.

9.4.2 Convex distance

Talagrand’s inequality if much more general than what we saw earlier and can be applied
to a wide variety of combinatorial applications. We need a define a more subtle notion of
distance.

We consider Ω = Ω1×· · ·×Ωn with product probability measure (i.e., independent random
variables).

Weighted hamming distance: given α = (α1, . . . , αn) ∈ Rn
≥0, x, y ∈ Ω, we set

dα(x, y) =
n∑
i=1

αi1xi 6=yi .

and for A ⊂ Ω,
dα(x,A) = inf

y∈A
dα(x, y)

Talagrand’s convex distance between x ∈ Ω and A ⊂ Ω is defined by

dT (x,A) = sup
α∈Rn≥0

|α|=1

dα(x,A)

(here |α|2 = α2
1 + · · ·+ α2

n).

Example 9.4.10. If A ⊂ {0, 1}n and x ∈ {0, 1}n, then dT (x,A) is the Euclidean distance
from x to the convex hull of A.

To see why this is called a convex distance, note that to compute dT (x,A), we can convert
Ω to {0, 1}n based on their agreement with x, i.e., let φx(y) ∈ {0, 1}n be the vector whose
i-th coordinate is 1 iff xi 6= yi. Then, dα(x,A) in Ω equals to dα(~0, φx(A)) = φx(A) · α in
{0, 1}n. Taking the supremum over α, we see, using the Example 9.4.10,

dT (x,A) = dist(~0,ConvexHullφx(A)).
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The general form of Talagrand’s inequality says the following. Note that it reduces to the
earlier special case Theorem 9.4.3 if Ω = {0, 1}n.

Theorem 9.4.11 (General form of Talagrand’s inequality). Let A ⊆ Ω = Ω1 × · · · ×Ωn,
with Ω equipped with a product probability measure. Let t ≥ 0. We have

P(A)P(x ∈ Ω : dT (x,A) ≥ t) ≤ e−t
2/4.

Let us see how Talagrand’s inequality recovers a more general form of our geometric
inequalities from earlier, extending from independent boolean random variables to inde-
pendent bounded random variables.

Lemma 9.4.12 (Convex distance upper bounds Euclidean distance). Let A ⊂ [0, 1]n and
x ∈ [0, 1]n. Then dist(x,ConvexHullA) ≤ dT (x,A).

Proof. For any α ∈ Rn, and any y ∈ [0, 1]n, we have

|(x− y) · α| ≤
n∑
i=1

|αi| |xi − yi| ≤
n∑
i=1

|αi| 1xi 6=yi .

First taking the infimum over all y ∈ A, and then taking the supremum over unit vectors
α, the LHS becomes dist(x,ConvexHullA) and the RHS becomes dT (x,A).

Corollary 9.4.13 (Convex functions of independent bounded random variables). Let
x = (x1, . . . , xn) ∈ [0, 1] be independent random variables (not necessarily identical). Let
t ≥ 0. Let A ⊂ [0, 1]n be a convex set. Then

P(x ∈ A)P(dist(x,A) ≥ t) ≤ e−t
2/4

where dist is Euclidean distance. Also, if f : [0, 1]n → R is a convex 1-Lipschitz function,
then

P(|f −Mf | ≥ t) ≤ 4e−t
2/4.
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9.4.3 How to apply Talagrand’s inequality

Theorem 9.4.14. Let Ω = Ω1 × · · · × Ωn equipped with the product measure. Let
f : Ω → R be a function. Suppose for every x ∈ Ω, there is some α(x) ∈ Rn

≥0 such that
for every y ∈ Ω,

f(x) ≤ f(y) + dα(x)(x, y).

Then, for every t ≥ 0,

P(|f −Mf | ≥ t) ≤ 4 exp

(
−t2

4 supx∈Ω |α(x)|2

)
.

Remark 9.4.15. Note that we can use a different weight α(x) for each x. This will be
important for applications. Intuitively, it says that the smallness (or, equivalently the
largeness) of f(x) can be “certified” using α(x).

Remark 9.4.16. By considering −f instead of f , we can change the hypothesis on f to

f(x) ≥ f(y)− dα(x)(x, y).

Note that x and y play asymmetric roles.

Remark 9.4.17 (Talagrand recovers bounded differences). By choosing a fixed α ∈ Rn
≥0

(not varying with x), we see that Theorem 9.4.14 recovers the bounded differences inequal-
ity Theorem 9.0.4 up to an unimportant constant factor in the exponent of the bound.
The power of Talagrand’s inequality is that we are allowed to vary α(x).

Proof. Let r ∈ R. Let A = {y ∈ Ω : f(y) ≤ r − t}. For any x ∈ Ω, by hypothesis, there
is some α(x) ∈ Rn

≥0 such that, for all y ∈ A,

f(x) ≤ f(y) + dα(x)(x, y) ≤ r − t+ dα(x)(x, y).

Taking infimum over y ∈ A, we find

f(x) ≤ r − t+ dα(x)(x,A) ≤ r − t+ |α(x)| dT (x,A).

Thus, if f(x) ≥ r, then

dT (x,A) ≥ t

|α(x)|
≥ t

supx |α(x)|
=: s

And hence by Talagrand’s inequality Theorem 9.4.11,

P(f ≤ r − t)P(f ≥ r) ≤ P(A)P(x ∈ Ω : dT (x,A) ≥ s) ≤ e−s
2/4.
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Taking r = Mf + t yields
P(f ≥Mf + t) ≤ 2e−s

2/4

and taking r = Mf yields
P(f ≤M− t) ≤ 2e−s

2/4.

Putting them together yields the final result.

9.4.4 Largest eigenvalue of a random matrix

Theorem 9.4.18. Let A = (aij) be an n×n symmetric random matrix with independent
entries in [−1, 1]. Let λ1(X) denote the largest eigenvalue of A. Then

P(|λ1(A)−Mλ1(A)| ≥ t) ≤ 4e−t
2/32.

Proof. We shall verify the hypotheses of Theorem 9.4.14. We would like to come up with
a good choice of a weight vector α(A) for each matrix A so that for any other symmetric
matrix B with [−1, 1] entries,

λ1(A) ≤ λ1(B) +
∑
i≤j

αi,j1aij 6=bij . (9.5)

(note that in a random symmetric matrix we only have n(n + 1)/2 independent random
entries: the entries below the diagonal are obtained by reflecting the upper diagonal
entries). Let v = v(A) be the unit eigenvector of A corresponding to the eigenvalue
λ1(A). Then, by the Courant–Fischer characterization of eigenvalues,

vᵀAv = λ1(A) and vᵀBv ≤ λ1(B).

We have

λ1(A) = vᵀAv = vᵀBv + vᵀ(A−B)v ≤ λ1(B) +
∑
i,j

2 |vi| |vj| 1aij 6=bij

(since |aij − bij| ≤ 2). Thus (9.5) holds for the vector α(A) = (αij)i≤j defined by

αij =

{
4 |vi| |vj| if i < j

2 |vi|2 if i = j.
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We have ∑
i≤j

α2
ij ≤ 8

∑
i,j

|vi|2 |vj|2 = 8

(∑
i

|vi|2
)2

= 8.

So Theorem 9.4.14 yields the result.

Remark 9.4.19. The above method can be adapted to prove concentration of the k-th
largest eigenvalue, which is not a convex function of A, so the previous method in Exam-
ple 9.4.9 does not apply.

Remark 9.4.20. If A has mean zero entries, then a moments computation shows that
Eλ1(A) = O(

√
n) (the constant can be computed as well). A much more advanced fact

is that, say for uniform {−1, 1} entries, the true scale of fluctuation is n−1/6, and when
normalized, the distribution converges to something called a Tracy–Widom distribution.

9.4.5 Certifiable functions and longest increasing subsequence

An increasing subsequence of a permutation σ = (σ1, . . . , σn) is defined to be some
(σi1 , . . . , σi`) for some i1 < · · · < i`.

Question 9.4.21. How well is the length X of the longest increasing subsequence (LIS)
of uniform random permutation concentrated?

While the entries of σ are not independent, we can generate a uniform random permutation
by taking iid uniform x1, . . . , xn ∼ Unif[0, 1] and let σ record the ordering of the xi’s. This
trick converts the problem into one about independent random variables.

The probability that there exists an increasing subsequence of length k is, by union bound,
at most

P(X ≥ k) ≤ 1

k!

(
n

k

)
≤
( e
k

)k (ne
k

)k
≤
(
e2n

k2

)k
.

It follows that MX = O(
√
n).

Changing one of the xi’s changes LIS by at most 1, so the bounded differences inequality
tells us that X is O(

√
n)-subgaussian. Can we do better?

The assertion that a permutation has an increasing permutation of length s can be checked
by verifying s coordinates of the permutation. Talagrand’s inequality tells us that in such
situations the typical fluctuation should be on the order O(

√
MX), or O(n1/4) in this

case.
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Definition 9.4.22. Let Ω = Ω1 × · · · × Ωn. Let A ⊆ Ω. We say that A is s-certifiable
for every x ∈ A, there exists a set I(x) ⊆ [n] with |I| ≤ s such that for every y ∈ Ω with
xi = yi for all i ∈ I(x), one has y ∈ A.

Theorem 9.4.23. Let Ω = Ω1 × · · · × Ωn be equipped with a product measure. Let
f : Ω→ R be 1-Lipschitz with respect to Hamming distance on Ω. Suppose that {f ≥ r}
is s-certifiable. Then, for every t ≥ 0,

P(f ≤ r − t)P(f ≥ r) ≤ e−t
2/(4s).

Proof. Let A,B ⊂ Ω be given by A = {x : f(x) ≤ r − t} and B = {y : f(y) ≥ r}. To
apply Talagrand’s inequality, Theorem 9.4.11, it suffices to show that for every y ∈ B,
one has dT (y, A) ≥ t/

√
s, i.e., there is some α(y) ∈ Rn

≥0 so that

dα(x, y) ≥ t|α(y)|/
√
s ∀x ∈ A.

Indeed, let y ∈ B, and let I(y) be a set of s coordinates that certify f(y) ≥ r. Let α(y)

be the indicator vector for I(y). Note that

dα(x, y) = |{i ∈ I(y) : xi 6= yi}| .

Every x ∈ A disagrees with y on at least t coordinates of I(y), or else one can change x
by fewer than t coordinates to get x′ that agrees with y on I, so that f(x′) ≥ r, which
contradicts f being 1-Lipschitz as f(x) ≤ r − t. It follows that

dα(x, y) ≥ t = t|α(y)|/
√
s.

Corollary 9.4.24. Let Ω = Ω1 × · · · × Ωn be equipped with a product measure. Let
f : Ω → R be 1-Lipschitz with respect to Hamming distance on Ω. Suppose {f ≥ r} is
r-certifiable for every r. Then for every t ≥ 0,

P(f ≤Mf − t) ≤ 2 exp

(
−t2

4Mf

)
.

and
P(f ≥Mf + t) ≤ 2 exp

(
−t2

4(Mf + t)

)
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Proof. Applying the previous theorem, we have, for every r ∈ R and every t ≥ 0,

P(f ≤ r − t)P(X ≥ r) ≤ exp

(
−t2

4r

)
.

Setting r = Mf , we obtain the lower tail.

P(f ≤Mf − t) ≤ 2 exp

(
−t2

4m

)
.

Setting r = m+ t, we obtain the upper tail

P(X ≥Mf + t) ≤ 2 exp

(
−t2

4(Mf + t)

)
.

Corollary 9.4.25. Let X be the length of the longest increasing subsequence of a random
permutation of [n]. Then for every ε > 0 there exists C > 0 so that

P(|X −MX| ≤ Cn1/4) ≥ 1− ε.

Remark 9.4.26. The distribution of the length X of longest increasing subsequence of a
uniform random permutation is now well understood through some deep results.

Vershik and Kerov (1977) showed that EX ∼ 2
√
n.

Baik, Deift, and Johansson (1999) showed that the correcting scaling is n1/6, and, after
under this normalization, n−1/6(X − 2

√
n) converges to the Tracy–Widom distribution,

the same distribution for the top eigenvalue of a random matrix.
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