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10 Entropy method

My greatest concern was what to call it. I thought of calling it “information,”
but the word was overly used, so I decided to call it “uncertainty.” When I
discussed it with John von Neumann, he had a better idea. Von Neumann told
me, “You should call it entropy, for two reasons. In the first place your uncer-
tainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows
what entropy really is, so in a debate you will always have the advantage.”

Claude Shannon, 1971

For more information theory, see the textbook by Cover and Thomas.

10.1 Basic properties

We define the (binary) entropy of a discrete random variable as follows.

Definition 10.1.1. Given a discrete random variable X taking values in S, with ps :=

P(X = s), its entropy is defined to be

H(X) :=
∑
s∈S

−ps log2 ps

(by convention if ps = 0 then the corresponding summand is set to zero).

Intuitively, H(X) measures the amount of “surprise” in the randomness of X. Note that
we always have

H(X) ≥ 0.

A more rigorous interpretation of this intuition is given by the Shannon noiseless coding
theorem, which says that the minimum number of bits needed to encode n iid copies of
X is nH(X) + o(n).

Here are some basic properties.

Lemma 10.1.2 (Uniform bound).

H(X) ≤ log2 | support(X)|,

with equality if and only if X is uniformly distributed.
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Proof. Let function f(x) = −x log2 x is concave for x ∈ [0, 1]. Let S = support(X). Then

H(X) =
∑
s∈S

f(ps) ≤ |S| f

(
1

|S|
∑
s∈S

ps

)
= |S| f

(
1

|S|

)
= log2 |S| .

We write H(X, Y ) for the entropy of the joint random variables (X, Y ), i.e., letting
Z = (X, Y ),

H(X, Y ) := H(Z) =
∑
(x,y)

−P(X = x, Y = y) log2 P(X = x, Y = y).

Note that
H(X, Y ) = H(X) +H(Y ) if X and Y are independent.

Definition 10.1.3 (Conditional entropy). Given jointly distributed random variables X
and Y , define

H(X|Y ) := Ey[H(X|Y = y)]

=
∑
y

P(Y = y)H(X|Y = y)

=
∑
y

P(Y = y)
∑
x

−P(X = x|Y = y) log2 P(X = x|Y = y)

(each line unpacks the previous line. In the summations, x and y range over the supports
of X and Y respectively).

Lemma 10.1.4 (Chain rule). H(X, Y ) = H(X) +H(Y |X)

Proof. Writing p(x, y) = P(X = x, Y = y), etc., we have by Bayes’s rule

p(x|y)p(y) = p(x, y),

125



10 Entropy method Probabilistic Methods in Combinatorics — Yufei Zhao

and so

H(X|Y ) := Ey[H(X|Y = y)] =
∑
y

−p(y)
∑
x

p(x|y) log2 p(x|y)

=
∑
x,y

−p(x, y) log2

p(x, y)

p(y)

=
∑
x,y

−p(x, y) log2 p(x, y) +
∑
y

p(y) log2 p(y)

= H(X, Y )−H(Y ).

Intuitively, the conditional entropy H(X|Y ) measures the amount of additional informa-
tion in X not contained in Y .

Some important special cases:

• if X = Y , or X = f(Y ), then H(X|Y ) = 0.

• If X and Y are independent, then H(X|Y ) = H(X)

• If X and Y are conditionally independent on Z, then H(X|Y, Z) = H(X|Z).

Lemma 10.1.5 (Subadditivity). H(X, Y ) ≤ H(X) +H(Y ), and more generally,

H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn).

Proof.

H(X) +H(Y )−H(X, Y ) =
∑
x,y

(−p(x, y) log2 p(x)− p(x, y) log2 p(y) + p(x, y) log2 p(x, y))

=
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑
x,y

p(x)p(y)f

(
p(x, y)

p(x)p(y)

)
≥ f(1) = 0

where f(t) = t is convex.
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More generally, by iterating the above inequality for two random variables, we have

H(X1, . . . , Xn) ≤ H(X1, . . . , Xn−1) +H(Xn)

≤ H(X1, . . . , Xn−2) +H(Xn−1) +H(Xn)

≤ · · · ≤ H(X1) + · · ·+H(Xn).

Remark 10.1.6. The nonnegative quantity

I(X;Y ) := H(X) +H(Y )−H(X, Y )

is called mutual information. Intuitively, it measures the amount of common information
between X and Y .

Lemma 10.1.7 (Dropping conditioning). H(X|Y ) ≤ H(X) and H(X|Y, Z) ≤ H(X|Z)

Proof. By chain rule and subadditivity, we have

H(X|Y ) = H(X, Y )−H(Y ) ≤ H(X).

The inequality conditioning on Z follows since the above implies that

H(X|Y, Z = z) ≥ H(X|Z = z)

holds for every z, and taking expectation of z yields H(X|Y, Z) ≤ H(X|Z).

Remark 10.1.8. The above inequality is often equivalently (why?) rephrased as the data
processing inequality : H(X|f(Y )) ≥ H(X|Y ) for any function f .

Here are some simple applications of entropy to tail bounds.

Let us denote the entropy of a Bernoulli random variable by

H(p) := H(Bernoulli(p)) = −p log2 p− (1− p) log2(1− p).

0 p 1
0

1

H(p)
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Theorem 10.1.9. If k ≤ n/2, then

∑
0≤i≤k

(
n

i

)
≤ 2H(k/n)n.

Equivalently, the above inequality says that for X ∼ Binomial(n, 1/2), we have P(X ≤
k) ≤ 2(H(k/n)−1)n. This bound can be established using our proof technique for Chernoff
bound by applying Markov’s inequality to the moment generating function:

∑
0≤i≤k

(
n

i

)
≤ (1 + x)n

xk
∀x ∈ [0, 1].

The infimum of the RHS over x ∈ [0, 1] is precisely 2(H(k/n)−1)n.

Now let us give a purely information theoretic proof. We can use the above theorem but
let’s do it from scratch to practice with entropy.

Proof. Let (X1, . . . , Xn) ∈ {0, 1}n be chosen uniformly conditioned on X1 + · · ·+Xn ≤ k.
Then

log2

∑
0≤i≤k

(
n

i

)
= H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn).

Each Xi is a Bernoulli with probability P(Xi = 1). Note that conditioned on X1 + · · ·+
Xn = m, one has P(Xi = 1) = m/n. Varying overm ≤ k ≤ n/2, we find P(Xi = 1) ≤ k/n,
so H(Xi) ≤ H(k/n). Hence

log2

∑
0≤i≤k

(
n

i

)
≤ H(k/n)n.

Remark 10.1.10. One can extend the above proof to bound the tail of Binomial(n, p) for
any p. The result can be expressed in terms of the relative entropy (also known as the
Kullback–Leibler divergence between two Bernoulli random variables). More concretely,
for X ∼ Binomial(n, p), one has

logP(X ≤ nq)

n
≤ −q log

q

p
− (1− q) log

1− q
1− p

∀0 ≤ q ≤ p

and
logP(X ≥ nq)

n
≤ −q log

q

p
− (1− q) log

1− q
1− p

∀p ≤ q ≤ 1.
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10.2 Upper bound on the permanent and the number of perfect
matchings

We define the permanent of n× n matrix A by

perA :=
∑
σ∈Sn

n∏
i=1

ai,σ(i).

Formula for the permanent is simply that of the determinant without the extra sign factor:

detA :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσi .

We’ll consider {0, 1}-valued matrices. If A is the bipartite adjacency matrix of a bipartite
graph, then perA is its number of perfect matchings.

The following theorem gives an upper bound on the number of perfect matchings of a
bipartite graph with a given degree distribution. It was conjectured by Minc (1963) and
proved by Brégman (1973).

Theorem 10.2.1 (Brégman). Let A = (aij) ∈ {0, 1}n×n, whose i-th row has sum di.
Then

perA ≤
n∏
i=1

(di!)
1/di

Note that equality is attained when A consists diagonal blocks of 1’s (corresponding to
perfect matchings in a bipartite graph of the form Kd1,d1 t · · · tKdt,dt).

Proof. (Radhakrishnan 1997) Let σ be a uniform random permutation of [n] conditioned
on aiσi = 1 for all i ∈ [n]. Then

log2 perA = H(σ) = H(σ1, . . . , σn) = H(σ1) +H(σ2|σ1) + · · ·+H(σn|σ1, . . . , σn−1).

We could have bounded H(σi|σ1, . . . , σi−1) ≤ H(σi) ≤ log2 |supportσi| = log2 di, but this
step would be too lossy.

Here is a useful trick: reveal the chosen entries in a uniform random order.

Let (τ1, . . . , τn) be a uniform random permutation of [n]. We have

H(σ) = H(στ1) +H(στ2|στ1) + · · ·+H(στn|στ1 , . . . , στn−1).

For now, consider the i-th row for a fixed i. Let k ∈ [n] be the index with τk = i.
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After seeing στ1 , . . . , στk−1
, the expected number of remaining choices for σi is uniformly

distributed in [di] (since τ is uniform), so applying the uniform bound we have

H(σi|στ1 , . . . , στk−1
) ≤ E[log2 support(σi|στ1 , . . . , στk−1

)] =
log2 1 + · · · log2 di

di
=

log2(di!)

di
.

It follows that

log2 perA = H(σ) ≤
n∑
i=1

log2(di!)

di

and the conclusion follows.

Corollary 10.2.2 (Kahn and Lovász). Let G be a graph. Let dv denote the degree of v.
Then the number pm(G) of perfect matchings of G satisfies

pm(G) ≤
∏

v∈V (G)

(dv!)
1/(2dv) =

∏
v∈V (G)

pm(Kdv ,dv)
1/(2dv).

Proof. (Alon and Friedland 2008) Brégman’s theorem implies the statement for bipartite
graphs G (by considering a bipartition on G tG). For the extension of non-bipartite G,
one can proceed via a combinatorial argument that pm(G tG) ≤ pm(G×K2), which is
left as an exercise.

10.2.1 The maximum number of Hamilton paths in a tournament

Question 10.2.3. What is the maximum possible number of directed Hamilton paths in
an n-vertex tournament?

Earlier we saw that a uniformly random tournament has n!/2n−1 Hamilton paths in ex-
pectation, and hence there is some tournament with at least this many Hamilton paths.
This result, due to Szele, is the earliest application of the probabilistic method.

Using Brégman’s theorem, Alon proved a nearly matching upper bound.

Theorem 10.2.4 (Alon 1990). Every n-vertex tournament has at most O(n3/2 · n!/2n)

Hamilton paths.

Remark 10.2.5. The upper bound has been improved to O(n3/2−γn!/2n) for some small
constant γ, while the lower bound n!/2n−1 has been improved by a constant factor. It
remains open to close this nO(1) factor gap.

We first prove an upper bound on the number of Hamilton cycles.
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Theorem 10.2.6 (Alon 1990). Every n-vertex tournament has at most O(
√
n · n!/2n)

Hamilton cycles.

Proof. Let A be an n×nmatrix whose (i, j) entry is 1 if i→ j is an edge of the tournament
and 0 otherwise. Let di be the sum of the i-th row. Then perA counts the number of 1-
factors (spanning disjoint unions of directed cycles) of the tournament. So by Brégman’s
theorem, we have

number of Hamilton cycles ≤ perA ≤
n∏
i=1

(di!)
1/d1 .

One can check (omitted) that the function g(x) = (x!)1/x is log-concave, i.e, g(n)g(n+2) ≥
g(n + 1)2 for all n ≥ 0. Thus, by a smoothing argument, among sequences (d1, . . . , dn)

with sum
(
n
2

)
, the RHS above is maximized when all the di’s are within 1 of each other,

which, by Stirling’s formula, gives O(
√
n · n!/2n).

Theorem 10.2.4 then follows by applying the above bound with the following lemma.

Lemma 10.2.7. Given an n-vertex tournament with P Hamilton paths, one can add a
new vertex to obtain a (n+ 1)-vertex tournament with at least P/4 Hamilton cycles.

Proof. Add a new vertex and orient its incident edges uniformly at random. For every
Hamilton path in the n-vertex tournament, there is probability 1/4 that it can be closed
up into a Hamilton cycle through the new vertex. The claim then follows by linearity of
expectation.

10.3 Sidorenko’s inequality

Given graphs F andG, a graph homomorphism from F toG is a map φ : V (F )→ V (G)

of vertices that sends edges to edges, i.e., φ(u)φ(v) ∈ E(G) for all uv ∈ E(F ).

Let
hom(F,G) = the number of graph homomorphisms from F to G.

Define the homomorphism density (the H-density in G) by

t(F,H) =
hom(F,G)

v(G)v(F )

= P(a uniform random map V (F )→ V (G) is a graph homomorphism F → G)
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In this section, we are interested in the regime of fixed F and large G, in which case
almost all maps V (F )→ V (G) are injective, so that there is not much difference between
homomorphisms and subgraphs. More precisely,

hom(F,G) = aut(F )(#copies of F in G as a subgraph) +OF (v(G)v(F )).

where aut(F ) is the number of automorphisms of F .

Question 10.3.1. Given a fixed graph F and constant p ∈ [0, 1], what is the minimum
possible F -density in a graph with edge density at least p?

The F -density in the random graph G(n, p) is pe(F ) + o(1). Here p is fixed and n→∞.

Can one do better?

If F is non-bipartite, then the complete bipartite graph Kn/2,n/2 has F -density zero. (The
problem of minimizing F -density is still interesting and not easy; it has been solved for
cliques.)

Sidorenko’s conjecture (1993) (also proposed by Erdős and Simonovits (1983)) says for
any fixed bipartite F , the random graph asymptotically minimizes F -density. This is an
important and well-known conjecture in extremal graph theory.

Conjecture 10.3.2 (Sidorenko). For every bipartite graph F , and any graph G,

t(F,G) ≥ t(K2, G)e(F ).

The conjecture is known to hold for a large family of graphs F .

The entropy approach to Sidorenko’s conjecture was first introduced by Li and Szegedy
(2011) and later further developed in subsequent works. Here we illustrate the entropy
approach to Sidorenko’s conjecture with several examples.

Theorem 10.3.3 (Blakey and Roy 1965). Sidorenko’s conjecture holds if F is a tree.

Proof. We will construct a probability distribution µ on Hom(F,G), the set of all graph
homomorphisms F → G. Unlike earlier applications of entropy, here we are trying to
prove a lower bound on hom(F,G) instead of an upper bound. So instead of taking µ to
be a uniform distribution (which automatically has entropy log2 hom(F,G)), we actually
take µ to be carefully constructed distribution, and apply the upper bound

H(µ) ≤ log2 |supportµ| = log2 hom(F,G).
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We are trying to show that

hom(F,G)

v(G)v(F )
≥
(

2e(G)

v(G)2

)e(F )

.

So we would like to find a probability distribution µ on Hom(F,G) satisfying

H(µ) ≥ e(F ) log2(2e(G))− (2e(F )− v(F )) log2 v(G). (10.1)

Let us explain the proof when F is a path on 4 vertices. The same proof extends to all
trees F .

We choose randomly a walk XY ZW in G as follows:

• XY is a uniform random edge of G (by this we mean first choosing an edge of G
uniformly at random, and then let X be a uniformly chosen endpoint of this edge,
and then Y the other endpoint);

• Z is a uniform random neighbor of Y ;

• W is a uniform random neighbor of Z.

Key observation: Y Z is distributed as a uniform random edge of G, and likewise with
ZW

Indeed, conditioned on the choice of Y , the vertices X and Z are both independent and
uniform neighbors of Y , so XY and Y Z are uniformly distributed.

Also, the conditional independence observation implies that

H(Z|X, Y ) = H(Z|Y ) and H(W |X, Y, Z) = H(W |Z)

and futhermore both quantities are equal to H(Y |X) since XY, Y Z, ZW are each dis-
tributed as a uniform random edge.

Thus

H(X, Y, Z,W ) = H(X) +H(Y |X) +H(Z|X, Y ) +H(W |X, Y, Z) [chain rule]

= H(X) +H(Y |X) +H(Z|Y ) +H(W |Z) [conditional independence]

= H(X) + 3H(Y |X)

= 3H(X, Y )− 2H(X) [chain rule]

≥ 3 log2(2e(G))− 2 log2 v(G)

In the final step we used H(X, Y ) = log2(2e(G)) since XY is uniformly distributed
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among edges, and H(X) ≤ log2 |support(X)| = log2 v(G). This proves (10.1) and hence
the theorem for a path of 4 vertices. (As long as the final expression has the “right form”
and none of the steps are lossy, the proof should work out.)

This proof easily generalizes to all trees.

Remark 10.3.4. See this MathOverflow discussions for the history as well as alternate
proofs: https://mathoverflow.net/q/189222/

Theorem 10.3.5. Sidorenko’s conjecture holds for all complete bipartite graphs.

Proof. Following the same framework as earlier, let us demonstrate the result for F = K2,2.
The same proof extends to all Ks,t.

We will pick a random tuple (X1, X2, Y1, Y2) ∈ V (G)4 with XiYj ∈ E(G) for all i, j as
follows.

• X1Y1 is a uniform random edge;

• Y2 is a uniform random neighbor of X1;

• X2 is a conditionally independent copy of X1 given (Y1, Y2).

The last point deserves more attention. Note that we are not simply uniformly randomly
choosing a common neighbor of Y1 and Y2 as one might naively attempt. Instead, one
can think of the first two steps as generating a distribution for (X1, Y1, Y2)—according to
this distribution, we first generate (Y1, Y2) according to its marginal, and then produce
two conditionally independent copies of X1.

From the previous proof (applied to a 2-edge path), we see that

H(X1, Y1, Y2) ≥ 2H(X1, Y1)−H(X1) ≥ 2 log2(2e(G))− log2 v(G).

So we have

H(X1, X2, Y1, Y2)

= H(Y1, Y2) +H(X1, X2|Y1, Y2) [chain rule]

= H(Y1, Y2) + 2H(X1|Y1, Y2) [conditional independence]

= 2H(X1, Y1, Y2)−H(Y1, Y2) [chain rule]

≥ 2(2 log2(2e(G))− log2 v(G))− 2 log2 v(G). [prev. ineq. and uniform bound]

= 4 log(2e(G))− 4 log2 v(G).

So we have verified (10.1) for K2,2.
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Theorem 10.3.6 (Conlon, Fox, Sudakov 2010). Sidorenko’s conjecture holds for a bipar-
tite graph that has a vertex adjacent to all vertices in the other part.

Proof. Let us illustrate the proof for the following graph. The proof extends to the general
case.

x0

y1

y2

y3

x1

x2

Let us choose a random tuple (X0, X1, X2, Y1, Y2, Y3) ∈ V (G)6 as follows:

• X0Y1 is a uniform random edge;

• Y2 and Y3 are independent uniform random neighbors of X0;

• X1 is a conditionally independent copy of X0 given (Y1, Y2);

• X2 is a conditionally independent copy of X0 given (Y2, Y3).

(as well as other symmetric versions.) Some important properties of this distribution:

• X0, X1, X2 are conditionally independent given (Y1, Y2, Y3);

• X1 and (X0, Y3, X2) are conditionally independent given (Y1, Y2);

• The distribution of (X0, Y1, Y2) is identical to the distribution of (X1, Y1, Y2).

We have

H(X0, X1, X2, Y1, Y2, Y3)

= H(X0, X1, X2|Y1, Y2, Y3) +H(Y1, Y2, Y3) [chain rule]

= H(X0|Y1, Y2, Y3) +H(X1|Y1, Y2, Y3) +H(X2|Y1, Y2, Y3) +H(Y1, Y2, Y3) [conditional independence]

= H(X0|Y1, Y2, Y3) +H(X1|Y1, Y2) +H(X2|Y2, Y3) +H(Y1, Y2, Y3) [conditional independence]

= H(X0, Y1, Y2, Y3) +H(X1, Y1, Y2) +H(X2, Y2, Y3)−H(Y1, Y2)−H(Y2, Y3). [chain rule]

The proof of Theorem 10.3.3 actually lower bounds the first three terms:

H(X0, Y1, Y2, Y3) ≥ 3 log2(2e(G))− 2 log2 v(G)

H(X1, Y1, Y2) ≥ 2 log2(2e(G))− log2 v(G)

H(X2, Y2, Y3) ≥ 2 log2(2e(G))− log2 v(G).
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We can apply the uniform support bound on the remaining terms.

H(Y1, Y2) = H(Y2, Y3) ≤ 2 log2 v(G).

Putting everything together, we have

H(X0, X1, X2, Y1, Y2, Y3) ≥ 7 log2(2e(G))− 8 log2 v(G),

thereby verifying (10.1).

To check that you understand the above proof, where did we use the assumption that F
has vertex complete to the other part?

Many other graphs can be proved by extending this method.

The “smallest” open case of Sidorenko conjecture is when F is the following graph, often
called the “Möbius graph”, which is K5,5 with a Hamilton cycle removed. (I think it is
called the “Möbius graph” because it is the face-vertex incidence graph of the simplicial
complex structure of the Möbius strip, built by gluing a strip of five triangles.)

Möbius graph = K5,5 \ C10 =

10.4 Shearer’s lemma

Shearer’s entropy lemma extends the subadditivity property of entropy. Befpre stating it
in full generality, let us first see the simplest instance of Shearer’s lemma.

Theorem 10.4.1 (Shearer’s lemma, special case).

2H(X, Y, Z) ≤ H(X, Y ) +H(X,Z) +H(Y, Z)

Proof. Using the chain rule and conditioning dropping, we have

H(X, Y ) = H(X) +H(Y |X)

H(X,Z) = H(X) +H(Z|X)

H(Y, Z) = H(Y ) +H(Z|Y )

Applying conditioning dropping, we see that their sum is at at least

2H(X, Y, Z) = 2H(X) + 2H(Y |X) + 2H(Z|X, Y ).
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Question 10.4.2. What is the maximum volume of a body in R3 that has area at most
1 when projected to each of the three coordinate planes?

The cube [0, 1]3 satisfies the above property and has area 1. It turns out that this is the
maximum.

To prove this claim, first let us use Shearer’s inequality to prove a discrete version.

Theorem 10.4.3. Let S ⊂ R3 be a finite set, and πxy(S) be its projection on the xy-plane,
etc. Then

|S|2 ≤ |πxy(S)| |πxz(S)| |πyz(S)|

Proof. Let (X, Y, Z) be a uniform random point of S. Then

2 log2 |S| = 2H(X, Y, Z) ≤ H(X, Y )+H(X,Z)+H(Y, Z) ≤ log2 πxy(S)+log2 πxz(S)+log2 πyz(S).

By approximating a body using cubes, we can deduce the following corollary.

Corollary 10.4.4. Let S be a body in R3. Then

vol(S)2 ≤ area(πxy(S)) area(πxz(S)) area(πyz(S)).

Let us now state the general form of Shearer’s lemma. (Chung, Graham, Frankl, and
Shearer 1986)

Theorem 10.4.5 (Shearer’s lemma). Let A1, . . . , As ⊂ [n] where each i ∈ [n] appears in
at least k sets Aj’s. Writing XA := (Xi)i∈A,

kH(X1, . . . , Xn) ≤
∑
j∈[s]

H(XAj).

The proof of the general form of Shearer’s lemma is a straightforward adaptation of the
proof of the special case earlier.

Like earlier, we can deduce an inequality about sizes of projections. (Loomis and Whitney
1949)
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Corollary 10.4.6 (Loomis–Whitney inequality). Writing πi for the projection from Rn

onto the hyperplane xi = 0, we have for every S ⊂ Rn,

|S|n−1 ≤
n∏
i=1

|πi(S)|

Corollary 10.4.7. Let A1, . . . , As ⊂ Ω where each i ∈ Ω appears in at least k sets Aj.
Then for every family F of subsets of Ω,

|F|k ≤
∏
j∈[s]

∣∣F|Aj ∣∣
where F|A := {F ∩ A : F ∈ F}.

Proof. Each subset of Ω corresponds to a vector (X1, . . . , Xn) ∈ {0, 1}n. Let (X1, . . . , Xn)

be a random vector corresponding to a uniform element of F . Then

k log2 |F| = kH(X1, . . . , Xn) ≤
∑
j∈[s]

H(XAj) = log2

∣∣F|Aj ∣∣ .
10.4.1 Triangle-intersecting families

We say that a set G of labeled graphs on the same vertex set is triangle-intersecting if
G ∩G′ contains a triangle for every G,G′ ∈ G.

Question 10.4.8. What is the largest triangle-intersecting family of graphs on n labeled
vertices?

The set of all graphs that contain a fixed triangle is triangle-intersecting, and they form
a 1/8 fraction of all graphs.

An easy upper bound: the edges form an intersecting family, so a triangle-intersecting
family must be at most 1/2 fraction of all graphs.

The next theorem improves this upper bound to < 1/4. It is also in this paper that
Shearer’s lemma was introduced.

Theorem 10.4.9 (Chung, Graham, Frankl, and Shearer 1986). Every triangle-
intersecting family of graphs on n labeled vertices has size < 2(n2)−2.

Proof. Let G be a triangle-intersecting family of graphs on vertex set [n] (viewed as a
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collection of subsets of edges of Kn)

For S ⊆ [n] with |S| = bn/2c, let AS =
(
S
2

)
∪
(

[n]\S
2

)
(i.e., AS is the union of the clique on

S and the clique on the complement of S). Let

r = |AS| =
(
bn/2c

2

)
+

(
dn/2e

2

)
≤ 1

2

(
n

2

)
.

For every S, every triangle has an edge in AS, and thus G restricted to AS must be an
intersecting family. Hence

|G|AS | ≤ 2|AS |−1 = 2r−1.

Each edge of Kn appears in at least

k =
r(
n
2

)( n

bn/2c

)
different AS with |S| = bn/2c (by symmetry and averaging). Applying Corollary 10.4.7,
we find that

|G|k ≤
(
2r−1

)( n
bn/2c) .

Therefore

|G| ≤ 2(n2)−
(n2)
r < 2(n2)−2.

Remark 10.4.10. A tight upper bound of 2(n2)−3 (matching the construction of taking all
graphs containing a fixed triangle) was conjectured by Simonovits and Sós (1976) and
proved by Ellis, Filmus, and Friedgut (2012) using Fourier analytic methods.

10.4.2 The number of independent sets in a regular bipartite graph

Question 10.4.11. Fix d. Which d-regular graph on a given number of vertices has the
most number of independent sets? Which graph G maximizes i(G)1/v(G)?

(Note that the number of independent sets is multiplicative: i(G1 tG2) = i(G1)i(G2).)

Alon and Kahn conjectured that for graphs on n vertices, when n is a multiple of 2d, a
disjoint union of Kd,d’s maximizes the number of independent sets.

Alon (1991) proved an approximate version of this conjecture. Kahn (2001) proved it
assuming the graph is bipartite. Zhao (2010) proved it in general.
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Theorem 10.4.12 (Kahn, Zhao). Let G be an n-vertex d-regular graph. Then

i(G) ≤ i(Kd,d)
n/(2d) = (2d+1 − 1)n/(2d)

where i(G) is the number of independent sets of G.

Proof assuming G is bipartite. (Kahn) Let us first illustrate the proof for

G =

x1

x2

x3

y1

y2

y3

Among all independent sets ofG, choose one uniformly at random, and let (X1, X2, X3, Y1, Y2, Y3) ∈
{0, 1}6 be its indicator vector. Then

2 log2 i(G) = 2H(X1, X2, X3, Y1, Y2, Y3)

= 2H(X1, X2, X3) + 2H(Y1, Y2, Y3|X1, X2, X3) [chain rule]

≤ H(X1, X2) +H(X1, X3) +H(X2, X3)

+ 2H(Y1|X1, X2, X3) + 2H(Y2|X1, X2, X3) + 2H(Y3|X1, X2, X3) [Shearer]

= H(X1, X2) +H(X1, X3) +H(X2, X3)

+ 2H(Y1|X1, X2) + 2H(Y2|X1, X3) + 2H(Y3|X2, X3) [conditional independence]

Here we are using that (a) Y1, Y2, Y3 are conditionally independent given (X1, X2, X3)

and (b) Y1 and (X3, Y2, Y3) are conditionally independent given (X1, X2). A more general
statement is that if S ⊂ V (G), then the restrictions to the different connected components
of G− S are conditionally independent given XS.

It remains to prove that

H(X1, X2) + 2H(Y1|X1, X2) ≤ log2 i(K2,2)

and two other analogous inequalities. Let Y ′1 be conditionally independent copy of Y1

given (X1, X2). Then (X1, X2, Y1, Y
′

1) is the indictor vector of an independent set of K2,2

(though not necessarily chosen uniformly).

x1

x2

y1

y′1
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Thus we have

H(X1, X2) + 2H(Y1|X1, X2) = H(X1, X2) +H(Y1|X1, X2) +H(Y ′1 |X1, X2)

= H(X1, X2, Y1, Y
′

1) [chain rule]

≤ log2 i(G) [uniform bound]

This concludes the proof for G = K2,2, which works for all bipartite G. Here are the
details.

Let V = A∪B be the vertex bipartition of G. Let X = (Xv)v∈V be the indicator function
of an independent set chosen uniformly at random. Write XS := (Xv)v∈S. We have

d log2 i(G) = dH(X) = dH(XA) + dH(XB|XA) [chain rule]

≤
∑
b∈B

H(XN(b)) + d
∑
b∈B

H(Xb|XA) [Shearer]

≤
∑
b∈B

H(XN(b)) + d
∑
b∈B

H(Xb|XN(b)) [drop conditioning]

For each b ∈ B, we have

H(XN(b)) + dH(Xb|XN(b)) = H(XN(b)) +H(X
(1)
b , . . . , X

(d)
b |XN(b))

= H(X
(1)
b , . . . , X

(d)
b , XN(b))

≤ log2 i(Kd,d)

where X(1)
b , . . . , X

(d)
b are conditionally independent copies of Xb given XN(b). Summing

over all b yields the result.

Now we give the argument from Zhao (2010) that removes the bipartite hypothesis. The
following combinatorial argument reduces the problem for non-bipartite G to that of
bipartite G.

Starting from a graph G, we construct its bipartite double cover G×K2 (see Figure 6),
which has vertex set V (G) × {0, 1}. The vertices of G ×K2 are labeled vi for v ∈ V (G)

and i ∈ {0, 1}. Its edges are u0v1 for all uv ∈ E(G). Note that G × K2 is always a
bipartite graph.

Lemma 10.4.13. Let G be any graph (not necessarily regular). Then

i(G)2 ≤ i(G×K2).

Once we have the lemma, Theorem 10.4.12 then reduces to the bipartite case, which we
already proved. Indeed, for a d-regular G, since G×K2 is bipartite, the bipartite case of
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2G G×K2 G×K2

Figure 6: The bipartite swapping trick in the proof of Lemma 10.4.13: swapping the
circled pairs of vertices (denoted A in the proof) fixes the bad edges (red and bolded),
transforming an independent set of 2G into an independent set of G×K2.

the theorem gives
i(G)2 ≤ i(G×K2) ≤ i(Kd,d)

n/d,

Proof of Lemma 10.4.13. Let 2G denote a disjoint union of two copies of G. Label its
vertices by vi with v ∈ V and i ∈ {0, 1} so that its edges are uivi with uv ∈ E(G) and
i ∈ {0, 1}. We will give an injection φ : I(2G)→ I(G×K2). Recall that I(G) is the set of
independent sets of G. The injection would imply i(G)2 = i(2G) ≤ i(G×K2) as desired.

Fix an arbitrary order on all subsets of V (G). Let S be an independent set of 2G. Let

Ebad(S) := {uv ∈ E(G) : u0, v1 ∈ S}.

Note that Ebad(S) is a bipartite subgraph of G, since each edge of Ebad has exactly one
endpoint in {v ∈ V (G) : v0 ∈ S} but not both (or else S would not be independent). Let
A denote the first subset (in the previously fixed ordering) of V (G) such that all edges in
Ebad(S) have one vertex in A and the other outside A. Define φ(S) to be the subset of
V (G)× {0, 1} obtained by “swapping” the pairs in A, i.e., for all v ∈ A, vi ∈ φ(S) if and
only if v1−i ∈ S for each i ∈ {0, 1}, and for all v /∈ A, vi ∈ φ(S) if and only if vi ∈ S for
each i ∈ {0, 1}. It is not hard to verify that φ(S) is an independent set in G ×K2. The
swapping procedure fixes the “bad” edges.

It remains to verify that φ is an injection. For every S ∈ I(2G), once we know T = φ(S),
we can recover S by first setting

E ′bad(T ) = {uv ∈ E(G) : ui, vi ∈ T for some i ∈ {0, 1}},

so that Ebad(S) = E ′bad(T ), and then finding A as earlier and swapping the pairs of A
back. (Remark: it follows that T ∈ I(G×K2) lies in the image of φ if and only if E ′bad(T )

is bipartite.)

The entropy proof of the bipartite case of Theorem 10.4.12 extends to graph homomor-
phisms, yielding the following result.
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Theorem 10.4.14 (Galvin and Tetali 2004). Let G be an n-vertex d-regular bipartite
graph. Let H be any graph allowing loops. Then

hom(G,H) ≤ hom(Kd,d, H)n/(2d)

Some important special cases:

• hom(G, ) = i(G), the number of independent sets of G;

• hom(G,Kq) = the number of proper q-colorings of G.

The bipartite hypothesis in Theorem 10.4.14 cannot be always be removed. For example,
if H = , then log2 hom(G,H) is the number of connected components of G, so that
the maximizers of log2 hom(G,H)/v(G) are disjoint unions of Kd+1’s.

ForH = Kq, corresponding to the proper q-colorings, the bipartite hypothesis was recently
removed.

Theorem 10.4.15 (Sah, Sawhney, Stoner, and Zhao 2020). Let G be an n-vertex d-
regular graph. Then

cq(G) ≤ cq(Kd,d)
n/(2d)

where cq(G) is the number of q-colorings of G.

Furthermore, it was also shown in the same paper that in Theorem 10.4.14, the bipartite
hypothesis on G can be weakened to triangle-free. Furthermore triangle-free is the weakest
possible hypothesis on G so that the claim is true for all H.

For more discussion and open problems on this topic, see the survey by Zhao (2017).
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