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2 Linearity of expectations

Let X = c1X1 + · · · + cnXn where X1, . . . , Xn are random variables, and c1, . . . , cn con-
stants. Then

E[X] = c1E[X1] + · · ·+ cnE[Xn]

Note: this identity does not require any assumption of independence. On the other hand,
generally E[XY ] 6= E[X]E[Y ] unless X and Y are uncorrelated (Independent random
variables are always uncorrelated)

Here is a simple question with a simple solution (there are also much more involved
solutions via enumerations, but linearity of expectations nearly trivializes the problem).

Question 2.0.1. What is the average number of fixed points of a random permutation
of [n] chosen uniformly at random?

Let Xi be the event that i is fixed. Then E[Xi] = 1/n. So the expected number of fixed
points is E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = 1

2.1 Hamiltonian paths in tournaments

Important observation for proving existence: With positive probability, X ≥ E[X] (like-
wise for X ≤ E[X])

A tournament is a directed complete graph.

Theorem 2.1.1 (Szele 1943). There is a tournament on n vertices with at least n!2−(n−1)

Hamiltonian paths

Proof. Let X be the number of Hamiltonian paths in a random tournament.

For every permutation σ of [n], one has the directed path σ(1) → σ(2) → · · · → σ(n)

with probability 2−n+1.

Let X be the number of σ satisfying the above. EX = n!2−n+1.

This was considered the first use of the probabilistic method. Szele conjectured that the
maximum number of Hamiltonian paths in a tournament on n players is n!/(2 − o(1))n.
This was proved by Alon (1990) using the Minc–Brégman theorem on permanents (we
will see this later in the course when discussing the entropy method).
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2.2 Sum-free set

A subset A in an abelian group is sum-free if there do not exist a, b, c ∈ A with a+b = c.

Does every n-element set contain a large sum-free set?

Theorem 2.2.1 (Erdős 1965). Every set of n nonzero integers contains a sum-free subset
of size ≥ n/3.

Proof. Let A ⊂ Z \ {0} with |A| = n. For θ ∈ [0, 1], let

Aθ := {a ∈ A : {aθ} ∈ (1/3, 2/3)}

where {·} denotes fractional part. Then Aθ is sum-free since (1/3, 2/3) is sum-free in
R/Z.

For θ uniformly chosen at random, {aθ} is also uniformly random in [0, 1], so P(a ∈ Aθ) =

1/3. By linearity of expectations, E|Aθ| = n/3.

Remark 2.2.2. Alon and Kleitman (1990) noted that one can improve the bound to ≥
(n+ 1)/3 by noting that |Aθ| = 0 for θ ≈ 0.

Bourgain (1997) improved it to ≥ (n+2)/3 via a difficult Fourier analytic argument. This
is currently the best bound known.

Eberhard, Green, and Manners (2014) showed that there exist n-element sets of integers
whose largest sum-free subset has size (1/3 + o(1))n.

It remains an open problem to prove ≥ (n+ ω(n))/3 for some function ω(n)→∞

2.3 Turán’s theorem and independent sets

Question 2.3.1. What is the maximum number of edges in an n-vertex Kk-free graph?

Taking the complement of a graph changes its independent sets to cliques and vice versa.
So the problem is equivalent to one about graphs without large independent sets.

The following result, due to Caro (1979) and Wei (1981), shows that a graph with small
degrees much contain large independent sets. The probabilistic method proof shown here
is due to Alon and Spencer.
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Theorem 2.3.2 (Caro 1979, Wei 1981). Every graph G contains an independent set of
size at least ∑

v∈V (G)

1

dv + 1
,

where dv is the degree of vertex v.

Proof. Consider a random ordering (permutation) of the vertices. Let I be the set of
vertices that appear before all of its neighbors. Then I is an independent set.

For each v ∈ V , P(v ∈ I) = 1
1+dv

(this is the probability that v appears first among
{v} ∪ N(v)). Thus E|I| =

∑
v∈V (G)

1
dv+1

. Thus with positive probability, |I| is at least
this expectation.

Remark 2.3.3. Equality occurs if G is a disjoint union of cliques.
Remark 2.3.4 (Derandomization). Here is an alternative “greedy algorithm” proof of the
Caro–Wei inequality.

Permute the vertices in non-increasing order of their degree.

And then greedily construct an independent set: at each step, take the first available
vertex (in this order) and then discarding all its neighbors.

If each vertex v is assigned weight 1/(dv + 1), then the total weight removed at each step
is at most 1. Thus there must be at least

∑
v 1/(dv + 1) steps.

Taking the complement

Corollary 2.3.5. Every n-vertex graph G contains a clique of size at least
∑

v∈V (G)
1

n−dv .

Note that equality is attained when G is multipartite.

Now let us answer the earlier question about maximizing the number of edges in a Kr+1-
free graph.

The Turán graph Tn,r is the complete multipartite graph formed by partitioning n

vertices into r parts with sizes as equal as possible (differing by at most 1).

Easy to see that Tn,r is Kr+1-free.

Turán’s theorem (1941) tells us that Tn,r indeed maximizes the number of edges among
n-vertex Kr+1-free graphs.

We will prove a slightly weaker statement, below, which is tight when n is divisible by r.

Theorem 2.3.6. (Turán’s 1941) Every n-vertex Kr+1-free graph has ≤
(
1− 1

r

)
n2

2
edges.
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Figure 3: The Turán graph T10,3.

Proof. Since G is Kr+1-free, by Corollary 2.3.5, letting d be average degree and m = nd/2

be the number of edges, we see that the size ω(G) of the largest clique of G satisfies

r ≥ ω(G) ≥
∑
v∈V

1

n− dv
≥ n

n− d
=

n

n− 2m/n
.

Rearranging gives m ≤
(
1− 1

r

)
n2

2
.

Remark 2.3.7. By a careful refinement of the above argument, we can deduce Turán’s
theorem that Tn,r maximizes the number of edges in a n-vertex Kr+1-free graph, by
noting that

∑
v∈V

1
n−dv is minimized over fixed

∑
v dv when the degrees are nearly equal.

2.4 Crossing number inequality

Consider drawings of graphs on a plane using continuous curves as edges.

The crossing number cr(G) is the minimum number of crossings in a drawing of G.

A graph is planar if cr(G) = 0.

K3,3 and K5 are non-planar; furthermore, the following famous theorem characterizes
these two graphs as the only obstructions to planarity

Kuratowski’s theorem (1930): every non-planar graph contains a subgraph that is
topologically homeomorphic to K3,3 or K5

(Also related: Wagner’s theorem (1937) says that a graph is planar if and only if it does
not have K3,3 or K5 as a minor. It is not too hard to show that Wagner’s theorem and
Kuratowski’s theorem are equivalent)
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Question 2.4.1. What is the minimum possible number of crossings that a drawing of:

• Kn? (Hill’s conjecture)

• Kn,n? (Zarankiewicz conjecture; Turán’s brick factory problem)

• a graph on n vertices and n2/100 edges?

The following result, due to Ajtai–Chvátal–Newborn–Szemerédi (1982) and Leighton
(1984), lower bounds the number of crossings for graphs with many edges.

Theorem 2.4.2 (Crossing number inequality). In a graph G = (V,E), if |E| ≥ 4|V |,
then

cr(G) &
|E|3

|V |2

Corollary 2.4.3. In a graph G = (V,E), if |E| & |V |2, then cr(G) & |V |4.

Proof. Recall Euler’s formula: v − e+ f = 2 for every connected planar graph

For every connected planar graph with at least one cycle, 3|F | ≤ 2|E| since every face is
adjacent to ≥ 3 edges, whereas every edge is adjacent to exactly 2 faces. Plugging into
Euler, |E| ≤ 3|V | − 6.

Thus |E| ≤ 3|V | for all planar graphs. Hence cr(G) > 0 whenever |E| > 3|V |.

By deleting one edge for each crossing, we get a planar graph, so |E| − cr(G) > 3|V |, i.e.,

cr(G) ≥ |E| − 3|V |

This is a “cheap bound” that we will boost using the probabilistic method.

For graphs with |E| = Θ(n2), this gives cr(G) & n2. This not a great bound. We will use
the probabilistic method to boost this bound.

Let p ∈ [0, 1] to be decided. Let G′ = (V ′, E ′) be obtained from G by randomly keeping
each vertex with probability p. Then

cr(G′) ≥ |E ′| − 3|V ′|

So
E cr(G′) ≥ E|E ′| − 3E|V ′|
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We have E cr(G′) ≤ p4 cr(G), E|E ′| = p2|E| and E|V ′| = pE|V |. So

p4 cr(G) ≥ p2|E| − 3p|V |.

Thus
cr(G) ≥ p−2|E| − 3p−3|V |.

Setting p ∈ [0, 1] so that 4p−3|V | = p−2|E|, we obtain cr(G) & |E|3 / |V |2.

2.4.1 Application to incidence geometry

Question 2.4.4. What is the maximum number of incidences between n distinct points
and n distinct lines on a plane?

Let P be a set of points and L a set of lines. Denote the number of incidences by

I(P ,L) := |{(p, `) ∈ P × L : p ∈ `}|

Example: n points and n lines:

P = [k]× [2k2] and L = {y = mx+ b : m ∈ [k], b ∈ [k2]}

Every line contains k points from P . Taking 3k3 ≈ n gives k4 = Θ(n4/3) incidences.

Can we do better?

No. The following foundational theorem in incidence geometry implies that one has
O(n4/3) incidences between n points and n lines.

Theorem 2.4.5 (Szemerédi–Trotter 1983). Given a set P of points and L of lines in R2,

I(P ,L) . |P|2/3|L|2/3 + |P|+ |L|.

We will show how to prove the Szemerédi–Trotter theorem using the crossing number
inequality. This proof is due to Székely (1997).

Trivial bound: I(P ,L) ≤ |P||L|

Using that every pair of points determine at most one line, and counting triples (p, p′, `) ∈
P × P × L with p 6= p′ and p, p′ ∈ `, this is ≤ |P|2 and

≥
∑
`∈L

|P ∩ `|(|P ∩ `| − 1) ≥ |I(P ,L)|2/|L| − |I(P ,L)|
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Combining we get
I(P ,L) . |P||L|1/2 + |L|

By point-line duality, also
I(P ,L) . |L||P|1/2 + |P|

This gives n3/2 for n points and n lines. Can we do better? Note that this is tight for
planes over finite fields. Need to use topology of Euclidean space.

Proof of Szemerédi–Trotter theorem. Assume that there are no lines with < 2 incidences
(otherwise remove such lines repeatedly until this is the same; we remove ≤ |L| incidences
this way).

Draw a graph based on incidences. Vertices are point in P and edges join consecutive
points of P on a given line of L.

A line with k incidences gives k − 1 ≥ k/2 edges, so the total number of edges is ≤
|I(P ,L)|/2.

There are at most |L|2 crossings. So by crossing number inequality

|L|2 ≥ cr(G) &
|E|3

|V |2
&
|I(P ,L)|3

|P|2
if |I(P ,L)| ≥ 8|P|.

So I(P ,L) . |P|2/3|L|2/3 + |P|. Remember to add |L| to the bound from the first step of
the proof (removing lines with < 2 incidences).

2.5 Dense packing of spheres in high dimensions

Question 2.5.1. What is the maximum density of a packing of non-overlapping unit
balls in Rn for large n?

Here the density is fraction of volume occupied (fraction of the box [−n, n]d as n→∞)

Let ∆n denote the supremum of unit ball packing densities in Rn

Exact maximum only solved in dimension 1, 2, 3, 8, 24. Dimensions 8 and 24 were only
solved recently (see this Quanta magazine story). Dimensions 8 and 24 are special because
of the existences of highly symmetric lattices (E8 lattice in dimension 8 and Leech lattice
in dimension 24).

What are examples of dense packings?

We can add balls greedily. Any maximal packing has density ≥ 2−n. Doubling the ball
radius would cover space
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What about lattices? Zn has sphere packing density vol(B(1/2)) = πn/2

(n/2)!2n
< n−cn.

Best upper bound: Kabatiansky–Levenshtein (1978): ∆n ≤ 2−(0.599···+o(1))n

Existence of a dense lattice? (Optimal lattices known in dimensions 1–8 and 24)

We will use the probabilistic method to show that a random lattice has high density.

How does one pick a random lattice?

A lattice the Z-span of of its basis vectors v1, . . . , vn. It’s covolume (volume of its
fundamental domain) is given by |det(v1|v2| · · · |vn)|.

So every matrix in SLn(R) corresponds to a unimodular lattice (i.e., covolume 1).

Every lattice can be represented in different ways by picking a different basis (e.g., {v1 +

v2, v2}). The matrices A,A′ ∈ SLn(R) represent the same lattice iff A′ = AU for some
U ∈ SLn(Z).

So the space of unimodular lattices is SLn(R)/ SLn(Z), which has a finite Haar measure
(even though this space not compact), so can normalize to a probability measure.

We can pick a random unimodular lattice in Rn by picking a random point in
SLn(R)/ SLn(Z) according to its Haar probability measure.

The following classic result of Siegel acts as like a linearity of expectations statement for
random lattices.

Theorem 2.5.2 (Siegel mean value theorem). Let L be the random lattice in Rn as above
and S ⊂ Rn. Then

E|S ∩ L \ {0}| = λLeb(S)

Proof sketch. 1. µ(S) = E|S ∩ L \ {0}| defines a measure on Rn (it is additive by
linearity of expectations)

2. This measure is invariant under SLn(R) action (since the random lattice is choosen
with respect to Haar measure)

3. Every SLn(R)-invariant measure on Rn is a constant multiple of the Lebesgue mea-
sure.

4. By considering a large ball S, deduce that c = 1.

Theorem 2.5.3 (Minkowski 1905). For every n, there exist a lattice sphere packing in
Rn with density ≥ 2−n.
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Proof. Let S be a ball of volume 1 (think 1 − ε for arbitrarily small ε > 0 if you like)
centered at the origin. By the Siegel mean value theorem, the random lattice is has
expected 1 nonzero lattice point in S, so with positive probability it has no nonzero
lattice point in S. Putting a copy of 1

2
S (volume 2−n) at each lattice point then gives a

lattice packing of density ≥ 2−n

Here is a factor 2 improvement. Take S to be a ball of volume 2. Note that the number
of nonzero lattice points in S must be even (if x ∈ S then −x ∈ S). So same argument
gives lattice packing of density ≥ 2−n+1.

The above improvement uses 2-fold symmetry of Rn. Can we do better by introducing
more symmetry?

Historically, a bunch of improvements of the form ≥ cn2−n for a sequence of improving
constants c > 0

Venkatesh (2012) showed that one can get a lattice with a k-fold symmetry by building
it using two copies of the cyclotomic lattice Z[ω] where ω = e2π/k. Every lattice of this
form has k-fold symmetry by multiplication by ω.

Skipping details, one can extend the earlier idea to choose a random unimodular lattice
in in dimension n = 2φ(k) with k-fold length-preserving symmetry (without fixed points).
An extension of Siegel mean value theorem also holds in this case.

By apply same argument with S being a ball of volume k, we get a a lattice packing of
density ≥ k2−n in Rn. This bound can be optimized (in term of asymptotics along a
subsequence of n) by taking primorial k = p1p2 · · · pm where p1 < p2 < · · · are the prime
numbers. This gives the current best known bound:

Theorem 2.5.4 (Venkatesh 2012). For infinitely many n, there exists a lattice sphere
packing in Rn of density

≥ (e−γ − o(1))n log log n2−n.

Here γ = 0.577 . . . is Euler’s constant.

Open problem 2.5.5. Do there exist lattices (or sphere packings) in Rn with density
≥ (c+ o(1))n for some constant c > 1/2?
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2.6 Unbalancing lights

Theorem 2.6.1. Let aij = ±1 for all i, j ∈ [n]. There exists xi, yj ∈ {−1, 1} for all
i, j ∈ [n] such that

n∑
i,j=1

aijxiyj ≥

(√
2

π
+ o(1)

)
n3/2

Interpretation: n × n array of lights. Can flip rows and columns. Want to turn on as
many lights as possible.

Proof. Choose y1, . . . , yn randomly. And then choose xi to make the i-th row sum
nonnnegative. Let

Ri =
n∑
j=1

aijyj and R =
n∑
i=1

|Ri|.

How is Ri distributed? Same distribution as Sn = ε1 + · · ·+ εn, a sum of n i.i.d. uniform
{−1, 1}. And so for every i

E[|Ri|] = E[|Sn|] =

(√
2

π
+ o(1)

)
√
n,

e.g., by central limit theorem

lim
n→∞

E
[
|Sn|√
n

]
= E[|X|] where X ∼ Normal(0, 1)

=
1√
2π

∫
R
|x|e−x2/2 dx =

√
2

π

(one can also use binomial sum identities to compute exactly: E[|Sn|] = n21−n( n−1
b(n−1)/2c

)
,

though it is rather unnecessary to do so.) Thus

E[R] =

(√
2

π
+ o(1)

)
n3/2.

Thus with positive probability, R ≥
(√

2
π

+ o(1)
)
n3/2.

The next example is tricky. The proof will set up a probabilistic process where the
parameters are not given explicitly. A compactness argument will show that a good
choice of parameters exists.
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Theorem 2.6.2. Let V = V1 ∪ · · · ∪ Vk, where V1, . . . , Vk are disjoint sets of size n. The
edges of the complete k-uniform hypergraph on V are colored with red/blue. Suppose
that every edge formed by taking one vertex from each V1, . . . , Vk is colored blue. Then
there exists S ⊂ V such that the number of red edges and blue edges in S differ by more
than cknk, where ck > 0 is a constant.

Proof. Let’s do this proof for k = 3. Proof easily generalizes to other k.

Let p1, p2, p3 be real numbers to be decided. We are going to pick S randomly by including
each vertex in Vi with probability pi, independently. Let

ai,j,k = #{blue edges in Vi × Vj × Vk} −#{red edges in Vi × Vj × Vk}.

Then
E[#{red edges in S} −#{blue edges in S}]

equals to some polynomial

f(p1, p2, p3) =
∑
i≤j≤k

ai,j,kpipjpk = n3p1p2p3 + a1,1,1p
3
1 + a1,1,2p

2
1p2 + · · · .

(note that a1,2,3 = n3 by hypothesis). We would be done if we can find p1, p2, p3 ∈ [0, 1]

such that |f(p1, p2, p3)| > c for some constant c > 0 (not depending on the ai,j,k’s). Note
that |ai,j,k| ≤ n3. We are done after the following lemma

Lemma 2.6.3. Let Pk denote the set of polynomials g(p1, . . . , pk) of degree k, whose
coefficients have absolute value ≤ 1, and the coefficient of p1p2 · · · pk is 1. Then there
is a constant ck > 0 such that for all g ∈ Pk, there is some p1, . . . , pk ∈ [0, 1] with
|g(p1, . . . , pk)| ≥ c.

Proof of Lemma. Set M(g) = supp1,...,pk∈[0,1] |g(p1, . . . , pk)| (note that sup is achieved as
max due to compactness). For g ∈ Pk, since g is nonzero (its coefficient of p1p2 · · · pk is
1), we have M(g) > 0. As Pk is compact and M : Pk → R is continuous, M attains a
minimum value c = M(g) > 0 for some g ∈ Pk. �
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