3 Alterations

3.1 Ramsey numbers

Recall from Section 1.1:
$R(s, t)=$ smallest n such that every red/blue edge coloring of K_{n} contains a red K_{s} or a blue K_{t}

Using the basic method (union bounds), we deduce
Theorem 3.1.1. If there exists $p \in[0,1]$ with

$$
\binom{n}{s} p^{\binom{s}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1
$$

then $R(s, t)>n$.

Proof sketch. Color edge red with prob p and blue with prob $1-p$. LHS upper bounds the probability of a red K_{s} or a blue K_{t}.

Using the alteration method, we deduce
Theorem 3.1.2. For all $p \in[0,1]$ and n,

$$
R(s, t)>n-\binom{n}{s} p^{\binom{s}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}}
$$

Proof sketch. Color edge red with prob p and blue with prob $1-p$ remove one vertex from each red K_{s} or blue K_{t}. RHS lower bounds the expected number remaining vertices.

3.2 Dominating set in graphs

In a graph $G=(V, E)$, we say that $U \subset V$ is dominating if every vertex in $V \backslash U$ has a neighbor in U.

Theorem 3.2.1. Every graph on n vertices with minimum degree $\delta>1$ has a dominating set of size at most $\left(\frac{\log (\delta+1)+1}{\delta+1}\right) n$.

Naive attempt: take out vertices greedily. The first vertex eliminates $1+\delta$ vertices, but subsequent vertices eliminate possibly fewer vertices.

Proof. Two-step process (alteration method):

1. Choose a random subset
2. Add enough vertices to make it dominating

Let $p \in[0,1]$ to be decided later. Let X be a random subset of V where every vertex is included with probability p independently.
Let $Y=V \backslash(X \cup N(X))$. Each $v \in V$ lies in Y with probability $\leq(1-p)^{1+\delta}$.
Then $X \cup Y$ is dominating, and

$$
\mathbb{E}[|X \cup Y|]=\mathbb{E}[|X|]+\mathbb{E}[|Y|] \leq p n+(1-p)^{1+\delta} n \leq\left(p+e^{-p(1+\delta)}\right) n
$$

using $1+x \leq e^{x}$ for all $x \in \mathbb{R}$. Finally, setting $p=\frac{\log (\delta+1)}{\delta+1}$ to minimize $p+e^{-p(1+\delta)}$, we bound the above expression by

$$
\leq\left(\frac{1+\log (\delta+1)}{\delta+1}\right)
$$

3.3 Heilbronn triangle problem

Question 3.3.1. How can one place n points in the unit square so that no three points forms a triangle with small area?

Let

$$
\Delta(n)=\sup _{\substack{S \subset[0,1]^{2} \\|S|=n}} \min _{\substack{p, q, r \in S \\ \text { distinct }}} \operatorname{area}(p q r)
$$

Naive constructions fair poorly. E.g., n points around a circle has a triangle of area $\Theta\left(1 / n^{3}\right)$ (the triangle formed by three consectutive points has side lengths $\asymp 1 / n$ and angle $\theta=(1-1 / n) 2 \pi)$. Even worse is arranging points on a grid, as you would get triangles of zero area.

Heilbronn conjectured that $\Delta(n)=O\left(n^{-2}\right)$.
Komlós, Pintz, and Szemerédi (1982) disproved the conjecture, showing $\Delta(n) \gtrsim n^{-2} \log n$. They used an elaborate probabilistic construction. Here we show a much simpler version probabilistic construction that gives a weaker bound $\Delta(n) \gtrsim n^{-2}$.
Remark 3.3.2. The currently best upper bound known is $\Delta(n) \leq n^{-8 / 7+o(1)}$ (Komlós, Pintz, and Szemerédi 1981)

Theorem 3.3.3. For every positive integer n, there exists a set of n points in $[0,1]^{2}$ such that every triple spans a triangle of area $\geq c n^{-2}$, for some absolute constant $c>0$.

Proof. Choose $2 n$ points at random. For every three random points p, q, r, let us estimate

$$
\mathbb{P}_{p, q, r}(\operatorname{area}(p, q, r) \leq \epsilon)
$$

By considering the area of a circular annulus around p, with inner and outer radii x and $x+\Delta x$, we find

$$
\begin{gathered}
\\
\mathbb{P}_{p, q}(|p q| \in[x, x+\Delta x]) \leq \pi\left((x+\Delta x)^{2}-x^{2}\right)
\end{gathered}
$$

So the probability density function satisfies

$$
\mathbb{P}_{p, q}(|p q| \in[x, x+d x]) \leq 2 \pi x d x
$$

For fixed p, q

$$
\mathbb{P}_{r}(\operatorname{area}(p q r) \leq \epsilon)=\mathbb{P}_{r}\left(\operatorname{dist}(p q, r) \leq \frac{2 \epsilon}{|p q|}\right) \lesssim \frac{\epsilon}{|p q|}
$$

Thus, with p, q, r at random

$$
\mathbb{P}_{p, q, r}(\operatorname{area}(p q r) \leq \epsilon) \lesssim \int_{0}^{\sqrt{2}} 2 \pi x \frac{\epsilon}{x} d x \asymp \epsilon
$$

Given these $2 n$ random points, let X be the number of triangles with area $\leq \epsilon$. Then $\mathbb{E} X=O\left(\epsilon n^{3}\right)$.
Choose $\epsilon=c / n^{2}$ with $c>0$ small enough so that $\mathbb{E} X \leq n$.
Delete a point from each triangle with area $\leq \epsilon$.
The expected number of remaining points is $\mathbb{E}[2 n-X] \geq n$, and no triangles with area $\leq \epsilon=c / n^{2}$.
Thus with positive probability, we end up with $\geq n$ points and no triangle with area $\leq c / n^{2}$.

Algebraic construction. Here is another construction due to Erdős (in appendix of Roth (1951)) also giving $\Delta(n) \gtrsim n^{-2}$:
Let p be a prime. The set $\left\{\left(x, x^{2}\right) \in \mathbb{F}_{p}^{2}: x \in \mathbb{F}_{p}\right\}$ has no 3 points collinear (a parabola meets every line in ≤ 2 points). Take the corresponding set of p points in $[p]^{2} \subset \mathbb{Z}^{2}$. Then every triangle has area $\geq 1 / 2$ due to Pick's theorem. Scale back down to a unit square. (If n is not a prime, then use that there is a prime between n and $2 n$.)

3.4 Markov's inequality

We note an important tool that will be used next.
Markov's inequality. Let $X \geq 0$ be random variable. Then for every $a>0$,

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

Proof. $\mathbb{E}[X] \geq \mathbb{E}\left[X 1_{X \geq a}\right] \geq \mathbb{E}\left[a 1_{X \geq a}\right]=a \mathbb{P}(X \geq a)$
Take-home message: for r.v. $X \geq 0$, if $\mathbb{E} X$ is very small, then typically X is small.

3.5 High girth and high chromatic number

If a graph has a k-clique, then you know that its chromatic number is at least k.
Conversely, if a graph has high chromatic number, is it always possible to certify this fact from some "local information"?

Surprisingly, the answer is no. The following ingenious construction shows that a graph can be "locally tree-like" while still having high chromatic number.

The girth of a graph is the length of its shortest cycle.
Theorem 3.5.1 (Erdős 1959). For all k, ℓ, there exists a graph with girth $>\ell$ and chromatic number $>k$.

Proof. Let $G \sim G(n, p)$ with $p=(\log n)^{2} / n$ (the proof works whenever $\log n / n \ll p \ll$ $n^{-1+1 / \ell}$). Here $G(n, p)$ is Erdős-Rényi random graph (n vertices, every edge appearing with probability p independently).
Let X be the number of cycles of length at most ℓ in G. By linearity of expectations, as there are exactly $\binom{n}{i}(i-1)!/ 2$ cycles of length i in K_{n} for each $3 \leq i \leq n$, we have (recall that ℓ is a constant)

$$
\mathbb{E} X=\sum_{i=3}^{\ell}\binom{n}{i} \frac{(i-1)!}{2} p^{i} \leq \sum_{i=3}^{\ell} n^{i} p^{i}=o(n) .
$$

By Markov's inequality

$$
\mathbb{P}(X \geq n / 2) \leq \frac{\mathbb{E} X}{n / 2}=o(1)
$$

(This allows us to get rid of all short cycles.)
How can we lower bound the chromatic number $\chi(\cdot)$? Note that $\chi(G) \geq|V(G)| / \alpha(G)$, where $\alpha(G)$ is the independence number (the size of the largest independent set).
With $x=(3 / p) \log n$,

$$
\mathbb{P}(\alpha(G) \geq x) \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}<n^{x} e^{-p x(x-1) / 2}=\left(n e^{-p(x-1) / 2}\right)^{x}=o(1) .
$$

Let n be large enough so that $\mathbb{P}(X \geq n / 2)<1 / 2$ and $\mathbb{P}(\alpha(G) \geq x)<1 / 2$. Then there is some G with fewer than $n / 2$ cycles of length $\leq \ell$ and with $\alpha(G) \leq(3 / p) \log n$.

Remove a vertex from each cycle to get G^{\prime}. Then $\left|V\left(G^{\prime}\right)\right| \geq n / 2$, girth $>\ell$, and $\alpha\left(G^{\prime}\right) \leq$ $\alpha(G) \leq(3 / p) \log n$, so

$$
\chi\left(G^{\prime}\right) \geq \frac{\left|V\left(G^{\prime}\right)\right|}{\alpha\left(G^{\prime}\right)} \geq \frac{n p}{6 \log n}=\frac{\log n}{6}>k
$$

if n is sufficiently large.
Remark 3.5.2. Erdős (1962) also showed that in fact one needs to see at least a linear number of vertices to deduce high chromatic number: for all k, there exists $\epsilon=\epsilon_{k}$ such that for all sufficiently large n there exists an n-vertex graph with chromatic number $>k$ but every subgraph on $\lfloor\epsilon n\rfloor$ vertices is 3 -colorable. (In fact, one can take $G \sim G(n, C / n)$; see "Probabilistic Lens: Local coloring" in Alon-Spencer)

3.6 Greedy random coloring

Recall $m(k)$ is the minimum number of edges in a k-uniform hypergraph that is not 2-colorable.
Earlier we proved that $m(k) \geq 2^{k-1}$. Indeed, given a k-graph with $<2^{k-1}$ edges, by randomly coloring the vertices, the expected number of monochromatic numbers is <1.
We also proved an upper bound $m(k)=O\left(k^{2} 2^{k}\right)$ by taking a random k-uniform hypergraph on k^{2} vertices.

Here is the currently best known lower bound.
Theorem 3.6.1 (Radhakrishnan and Srinivasan (2000)). $m(k) \gtrsim \sqrt{\frac{k}{\log k}} 2^{k}$

Here we present a simpler proof, based on a random greedy coloring, due to Cherkashin and Kozik (2015), following an approach of Pluhaár (2009).

Proof. Suppose H is a k-graph with m edges.
Map $V(H) \rightarrow[0,1]$ uniformly at random.
Color vertices greedily from left to right: color a vertex blue unless it would create a monochromatic edge, in which case color it red (i.e., every red vertex is the final vertex in an edge with all earlier $k-1$ vertices have been colored blue).

The resulting coloring has no all-blue edges. What is the probability of seeing a red edge? If there is a red edge, then there must be two edges e, f so that the last vertex of e is the first vertex of f. Call such pair (e, f) conflicting.

Want to bound probability of seeing a conflicting pair in a random $V(H) \rightarrow[0,1]$.
Here is an attempt (an earlier weaker result due to Pluhaár (2009)). Each pair of edges with exactly one vertex in common conflicts with probability $\frac{(k-1)!^{2}}{(2 k-1)!}=\frac{1}{2 k-1}\binom{2 k-2}{k-1}^{-1} \asymp$ $k^{-1 / 2} 2^{-2 k}$; union bounding over $<m^{2}$ pairs of edges, the probability of of getting a conflicting edge is $\lesssim m^{2} k^{-1 / 2} 2^{-2 k}$, which is <1 for some $m \asymp k^{1 / 4} 2^{k}$.

We'd like to do better by more carefully analyzing conflicting edges. Continuing ...
Write $[0,1]=L \cup M \cup R$ where (p to be decided)

$$
L:=\left[0, \frac{1-p}{2}\right) \quad M:=\left[\frac{1-p}{2}, \frac{1+p}{2}\right] \quad R:=\left(\frac{1+p}{2}, 1\right] .
$$

The probability that a given edge lands entirely in L is $\left(\frac{1-p}{2}\right)^{k}$, and likewise with R
So probability that some edge of H is entirely contained in L or contained in R is \leq $2 m\left(\frac{1-p}{2}\right)^{k}$.
Suppose that no edge of H lies entirely in L or entirely in R. If (e, f) conflicts, then their unique common vertex $x_{v} \in e \cap f$ must lie in M. So the probability that (e, f) conflicts is (here we use $x(1-x) \leq 1 / 4$)

$$
\int_{(1-p) / 2}^{(1+p) / 2} x^{k-1}(1-x)^{k-1} d x \leq p 4^{-k+1}
$$

Thus the probability of seeing any conflicting pair is

$$
\leq 2 m\left(\frac{1-p}{2}\right)^{k}+m^{2} p 4^{-k+1}<2^{-k+1} m e^{-p k}+\left(2^{-k+1} m\right)^{2} p
$$

Set $p=\log \left(2^{-k+2} k / m\right) / k$, we find that the above probability is <1 for $m=c 2^{k} \sqrt{k / \log k}$, with $c>0$ being a sufficiently small constant.

MIT OpenCourseWare
https://ocw.mit.edu
18.226 Probabilistic Method in Combinatorics

Fall 2020

For information aboutciting these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

