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8 Janson Inequalities

We present a collection of inequalities, known collectively as Janson inequalities
(Janson 1990). These tools allow us to estimate lower tail large deviation probabilities.

A typical application of Janson’s inequality allows us to upper bound the probability
that a random graph 𝐺 (𝑛, 𝑝) does not contain any copy of some subgraph. Compared
to the second moment method from Chapter 4, Janson inequalities (which is applicable
in more limited setups) gives much better bounds, usually with exponential decays.

8.1 Probability of non-existence
The following setup should be a reminiscent of both the second moment method as
well as Lovász local lemma (the random variable model).

Setup 8.1.1 (for Janson’s inequality: counting containments)
Let 𝑅 be a random subset of [𝑁] with each element included independently (possibly
with different probabilities).

Let 𝑆1, . . . , 𝑆𝑘 ⊆ [𝑁]. Let 𝐴𝑖 be the event that 𝑆𝑖 ⊆ 𝑅. Let

𝑋 =
∑︁
𝑖

1𝐴𝑖

be the number of sets 𝑆𝑖 contained in the same set 𝑅. Let

𝜇 = E[𝑋] =
∑︁
𝑖

P(𝐴𝑖).

Write 𝑖 ∼ 𝑗 if 𝑖 ≠ 𝑗 and 𝑆𝑖 ∩ 𝑆 𝑗 ≠ ∅. Let (as in the second moment method)

Δ =
∑︁

(𝑖, 𝑗):𝑖∼ 𝑗
P(𝐴𝑖𝐴 𝑗 ) =

∑︁
(𝑖, 𝑗):𝑖∼ 𝑗

P(𝑆𝑖 ∪ 𝑆 𝑗 ⊆ 𝑅)

(note that (𝑖, 𝑗) and ( 𝑗 , 𝑖) is each counted once).

The following inequality appeared in Janson, Łuczak, and Ruciński (1990).
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Theorem 8.1.2 (Janson inequality I)
Assuming Setup 8.1.1,

P(𝑋 = 0) ≤ 𝑒−𝜇+Δ/2.

This inequality is most useful when Δ = 𝑜(𝜇).

Remark 8.1.3. When P(𝐴𝑖) = 𝑜(1) (which is the case in a typical application), Harris’
inequality gives us

P(𝑋 = 0) = P
(
𝐴1 · · · 𝐴𝑘

)
≥

𝑘∏
𝑖=1
P

(
𝐴𝑖

)
=

𝑘∏
𝑖=1

(1 − P(𝐴𝑖)) = exp

(
−(1 + 𝑜(1))

𝑘∑︁
𝑖=1
P(𝐴𝑖)

)
= 𝑒−(1+𝑜(1))𝜇 .

In the setting where Δ = 𝑜(𝜇), two bounds match to give P(𝑋 = 0) = 𝑒−(1+𝑜(1)𝜇.

Proof. Let
𝑟𝑖 = P(𝐴𝑖 |𝐴1 · · · 𝐴𝑖−1).

We have

P(𝑋 = 0) = P(𝐴1 · · · 𝐴𝑘 )
= P(𝐴1)P(𝐴2 |𝐴1) · · · P(𝐴𝑘 |𝐴1 · · · 𝐴𝑘−1)
= (1 − 𝑟1) · · · (1 − 𝑟𝑘 )
≤ 𝑒−𝑟1−···−𝑟𝑘

It suffices now to prove that:

Claim. For each 𝑖 ∈ [𝑘]

𝑟𝑖 ≥ P(𝐴𝑖) −
∑︁
𝑗<𝑖: 𝑗∼𝑖

P(𝐴𝑖𝐴 𝑗 ).

Summing the claim over 𝑖 ∈ [𝑘] would then yield

𝑘∑︁
𝑖=1

𝑟𝑖 ≥
∑︁
𝑖

P(𝐴𝑖) −
1
2

∑︁
𝑖

∑︁
𝑗∼𝑖
P(𝐴𝑖𝐴 𝑗 ) = 𝜇 −

Δ

2

and thus

P(𝑋 = 0) ≤ exp

(
−

∑︁
𝑖

𝑟𝑖

)
≤ exp

(
−𝜇 + Δ

2

)
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Proof of claim. Recall that 𝑖 is given and fixed. Let

𝐷0 =
∧
𝑗<𝑖: 𝑗≁𝑖

𝐴 𝑗 and 𝐷1 =
∧
𝑗<𝑖: 𝑗∼𝑖

𝐴 𝑗

Then

𝑟𝑖 = P(𝐴𝑖 |𝐴1 · · · 𝐴𝑖−1) = P(𝐴𝑖 |𝐷0𝐷1) =
P(𝐴𝑖𝐷0𝐷1)
P(𝐷0𝐷1)

≥ P(𝐴𝑖𝐷0𝐷1)
P(𝐷0)

= P(𝐴𝑖𝐷1 |𝐷0) = P(𝐴𝑖 |𝐷0) − P(𝐴𝑖𝐷1 |𝐷0)
= P(𝐴𝑖) − P(𝐴𝑖𝐷1 |𝐷0) [by independence]

Since 𝐴𝑖 and 𝐷1 are both increasing events, and 𝐷0 is a decreasing event, by Harris’
inequality (Corollary 7.1.6),

P(𝐴𝑖𝐷1 |𝐷0) ≤ P(𝐴𝑖𝐷1) = P
(
𝐴𝑖 ∧

∨
𝑗<𝑖: 𝑗∼𝑖

𝐴 𝑗

)
≤

∑︁
𝑗<𝑖: 𝑗∼𝑖

P(𝐴𝑖𝐴 𝑗 )

This concludes the proof of the claim, and thus the proof of the theorem. □

Remark 8.1.4 (History). Janson’s original proof was via analytic interpolation. The
above proof is based on Boppana and Spencer (1989) with a modification by Warnke
(personal communication). It has some similarities to the proof of Lovász local lemma
from Section 6.1. The above proof incorporates ideas from Riordan and Warnke
(2015), who extended Janson’s inequality from principal up-set to general up-sets.
Indeed, the above proof only requires that the events 𝐴𝑖 are increasing, whereas earlier
proofs of the result (e.g., the proof in Alon–Spencer) requires the full assumption of
Setup 8.1.1, namely that each 𝐴𝑖 is an event of the form 𝑆𝑖 ⊆ 𝑅𝑖 (i.e., a principal
up-set).

Question 8.1.5
What is the probability that 𝐺 (𝑛, 𝑝) is triangle-free?

In Setup 8.1.1, let [𝑁] with 𝑁 =
(𝑛
2
)

be the set of edges of 𝐾𝑛, and let 𝑆1, . . . , 𝑆(𝑛3) be
3-element sets where each 𝑆𝑖 is the edge-set of a triangle. As in the second moment
calculation in Section 4.2, we have

𝜇 =

(
𝑛

3

)
𝑝3 ≍ 𝑛3𝑝3 and Δ ≍ 𝑛4𝑝5.

(where Δ is obtained by considering all appearances of a pair of triangles glued along
an edge).
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If 𝑝 ≪ 𝑛−1/2, then Δ = 𝑜(𝜇), in which case Janson inequality I (Theorem 8.1.2 and
Remark 8.1.3) gives the following.

Theorem 8.1.6
If 𝑝 = 𝑜(𝑛−1/2) , then

P(𝐺 (𝑛, 𝑝) is triangle-free) = 𝑒−(1+𝑜(1))𝜇 = 𝑒−(1+𝑜(1))𝑛3𝑝3/6.

Corollary 8.1.7
For a constant 𝑐 > 0,

lim
𝑛→∞
P(𝐺 (𝑛, 𝑐/𝑛) is triangle-free) = 𝑒−𝑐3/6.

In fact, the number of triangles in 𝐺 (𝑛, 𝑐/𝑛) converges to a Poisson distribution
with mean 𝑐3/6. On the other hand, when 𝑝 ≫ 1/𝑛, the number of triangles is
asymptotically normal.

What about if 𝑝 ≫ 𝑛−1/2, so that Δ ≫ 𝜇. Janson inequality I does not tell us anything
nontrivial. Do we still expect the triangle-free probability to be 𝑒−(1+𝑜(1))𝜇, or even
≤ 𝑒−𝑐𝜇?

As noted earlier in Remark 7.2.3, another way to obtain a lower bound on the probability
triangle-freeness is to consider the probability the 𝐺 (𝑛, 𝑝) is empty (or contained in
some fixed complete bipartite graph), in which case we obtain

P(𝐺 (𝑛, 𝑝) is triangle-free) ≥ (1 − 𝑝)Θ(𝑛2) = 𝑒−Θ(𝑛2𝑝)

(the second step assumes that 𝑝 is bounded away from 1. If 𝑝 ≫ 𝑛−1/2, so the above
lower bound better than the previous one: 𝑒−Θ(𝑛2𝑝) ≫ 𝑒−(1+𝑜(1))𝜇.

Nevertheless, we’ll still use Janson to bootstrap an upper bound on the triangle-free
probability. More generally, the next theorem works in the complement region of the
Janson inequality I, where now Δ ≥ 𝜇.

Theorem 8.1.8 (Janson inequality II)
Assuming Setup 8.1.1, if Δ ≥ 𝜇, then

P(𝑋 = 0) ≤ 𝑒−𝜇2/(2Δ) .

The proof idea is to applying the first Janson inequality on a randomly sampled subset
of events. This sampling technique might remind you of some earlier proofs, e.g.,
the proof of the crossing number inequality (Theorem 2.6.2), where we first proved a
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“cheap bound” that worked in a more limited range, and then used sampling to obtain
a better bound.

Proof. For each 𝑇 ⊆ [𝑘], let 𝑋𝑇 :=
∑
𝑖∈𝑇 1𝐴𝑖 denote the number of occurring events in

𝑇 . We have
P(𝑋 = 0) ≤ P(𝑋𝑇 = 0) ≤ 𝑒−𝜇𝑇+Δ𝑇/2

where
𝜇𝑇 =

∑︁
𝑖∈𝑇
P(𝐴𝑖)

and
Δ𝑇 =

∑︁
(𝑖, 𝑗)∈𝑇2:𝑖∼ 𝑗

P(𝐴𝑖𝐴 𝑗 )

Choose 𝑇 ⊆ [𝑘] randomly by including every element with probability 𝑞 ∈ [0, 1]
independently. We have

E𝜇𝑇 = 𝑞𝜇 and EΔ𝑇 = 𝑞2Δ

and so
E(−𝜇𝑇 + Δ𝑇/2) = −𝑞𝜇 + 𝑞2Δ/2.

By linearity of expectations, thus there is some choice of 𝑇 ⊆ [𝑘] so that

−𝜇𝑇 + Δ𝑇/2 ≤ −𝑞𝜇 + 𝑞2Δ/2

so that
P(𝑋 = 0) ≤ 𝑒−𝑞𝜇+𝑞2Δ/2

for every 𝑞 ∈ [0, 1]. Since Δ ≥ 𝜇, we can set 𝑞 = 𝜇/Δ ∈ [0, 1] to get the result. □

To summarize, the first two Janson inequalities tell us that

P(𝑋 = 0) ≤
{
𝑒−𝜇+Δ/2 if Δ < 𝜇
𝑒−𝜇

2/(2Δ) if Δ ≥ 𝜇.

Remark 8.1.9. If 𝜇 → ∞ and Δ ≪ 𝜇2, then Janson inequality II implies P(𝑋 = 0) =
𝑜(1), which we knew from second moment method. However Janson’s inequality
gives an exponentially decaying tail bound, compared to only a polynomially decaying
tail via the second moment method. The exponential tail will be important in an
application below to determining the chromatic number of 𝐺 (𝑛, 1/2).

Let us revisit the example of estimating the probability that 𝐺 (𝑛, 𝑝) is triangle-free,
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now in the regime 𝑝 ≫ 𝑛−1/2. We have

𝑛3𝑝3 ≍ 𝜇 ≪ Δ ≍ 𝑛4𝑝5.

So so for large enough 𝑛, Janson inequality II tells us

P(𝐺 (𝑛, 𝑝) is triangle-free) ≤ 𝑒−𝜇2/(2Δ) = 𝑒−Θ(𝑛2𝑝)

Since

P(𝐺 (𝑛, 𝑝) is triangle-free) ≥ P(𝐺 (𝑛, 𝑝) is empty) ≥ (1 − 𝑝) (
𝑛
2) = 𝑒−Θ(𝑛2𝑝)

where the final step assumes that 𝑝 is bounded away from 1, we conclude that

P(𝐺 (𝑛, 𝑝) is triangle-free) = 𝑒−Θ(𝑛2𝑝)

We summarize the results below (strictly speaking we have not yet checked the case
𝑝 ≍ 𝑛−1/2, which we can verify by applying Janson inequalities; note that the two
regimes below match at the boundary).

Theorem 8.1.10
Suppose 𝑝 = 𝑝𝑛 ≤ 0.99. Then

P(𝐺 (𝑛, 𝑝) is triangle-free) =
{

exp
(
−Θ(𝑛2𝑝)

)
if 𝑝 ≳ 𝑛−1/2

exp
(
−Θ(𝑛3𝑝3)

)
if 𝑝 ≲ 𝑛−1/2

Remark 8.1.11. Sharper results are known. Here are some highlights.

1. The number of triangle-free graphs on 𝑛 vertices is 2(1+𝑜(1))𝑛2/4. In fact, an even
stronger statement is true: almost all (i.e., 1−𝑜(1) fraction) 𝑛-vertex triangle-free
graphs are bipartite (Erdős, Kleitman, and Rothschild 1976).

2. If 𝑚 ≥ 𝐶𝑛3/2√︁log 𝑛 for any constant 𝐶 >
√

3/4 (and this is best possible), then
almost all all 𝑛-vertex𝑚-edge triangle-free graphs are bipartite (Osthus, Prömel,
and Taraz 2003). This result has been extended to 𝐾𝑟-free graphs for every fixed
𝑟 (Balogh, Morris, Samotĳ, and Warnke 2016).

3. For 𝑛−1/2 ≪ 𝑝 ≪ 1, (Łuczak 2000)

− logP(𝐺 (𝑛, 𝑝) is triangle-free) ∼ − logP(𝐺 (𝑛, 𝑝) is bipartite) ∼ 𝑛2𝑝/4.

This result was generalized to general 𝐻-free graphs using the powerful recent
method of hypergraph containers (Balogh, Morris, and Samotĳ 2015).
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8.2 Lower tails
Previously we looked at the probability of non-existence. Now we would like to
estimate lower tail probabilities. Here is a model problem.

Question 8.2.1
Fix a constant 0 < 𝛿 ≤ 1. Let 𝑋 be the number of triangles of 𝐺 (𝑛, 𝑝). Estimate

P(𝑋 ≤ (1 − 𝛿)E𝑋).

We will bootstrap Janson inequality I, P(𝑋 = 0) ≤ exp(−𝜇 + Δ/2), to an upper bound
on lower tail probabilities.

Theorem 8.2.2 (Janson inequality III)
Assume Setup 8.1.1. For any 0 ≤ 𝑡 ≤ 𝜇,

P(𝑋 ≤ 𝜇 − 𝑡) ≤ exp
(

−𝑡2
2(𝜇 + Δ)

)
Note that setting 𝑡 = 𝜇 we basically recover the first two Janson inequalities (up to an
unimportant constant factor in the exponent):

P(𝑋 = 0) ≤ exp
(

−𝜇2

2(𝜇 + Δ)

)
. (8.1)

(Note that this form of the inequality conveniently captures Janson inequalities I & II.)

Proof. (by Lutz Warnke1) We start the proof similarly to the proof of the Chernoff
bound, by applying Markov’s inequality on the moment generating function. To that
end, let 𝜆 ≥ 0 to be optimized later. Let

𝑞 = 1 − 𝑒−𝜆.

By Markov’s inequality,

P(𝑋 ≤ 𝜇 − 𝑡) = P
(
𝑒−𝜆𝑋 ≥ 𝑒−𝜆(𝜇−𝑡)

)
≤ 𝑒𝜆(𝜇−𝑡) E 𝑒−𝜆𝑋

≤ 𝑒𝜆(𝜇−𝑡) E[(1 − 𝑞)𝑋] .

1Personal communication
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For each 𝑖 ∈ [𝑘], let𝑊𝑖 ∼ Bernoulli(𝑞) independently. Consider the random variable

𝑌 =

𝑘∑︁
𝑖=1

1𝐴𝑖𝑊𝑖 .

Conditioned on the value of 𝑋 , the probability that𝑌 = 0 is (1−𝑞)𝑋 (i.e., the probability
that𝑊𝑖 = 0 for each of the 𝑋 events 𝐴𝑖 that occurred). Taking expectation over 𝑋 , we
have

P(𝑌 = 0) = E[P(𝑌 = 0|𝑋)] = E[(1 − 𝑞)𝑋] .

Note that 𝑌 fits within Setup 8.1.1 by introducing 𝑘 new elements to the ground set
[𝑁], where each new element is included according to 𝑊𝑖, and enlarging each 𝑆𝑖 to
include this new element. The relevant parameters of 𝑌 are

𝜇𝑌 := E𝑌 = 𝑞𝜇

and
Δ𝑌 :=

∑︁
(𝑖, 𝑗):𝑖∼ 𝑗

E[1𝐴𝑖𝑊𝑖1𝐴 𝑗
𝑊 𝑗 ] = 𝑞2Δ.

Then Janson inequality I applied to 𝑌 gives

P(𝑌 = 0) ≤ 𝑒−𝜇𝑌+Δ𝑌 /2 = 𝑒−𝑞𝜇+𝑞
2Δ/2.

Therefore,
E[(1 − 𝑞)𝑋] = P(𝑌 = 0) ≤ 𝑒−𝑞𝜇+𝑞2Δ/2.

Continuing the moment calculation at the beginning of the proof, and using that

𝜆 − 𝜆
2

2
≤ 𝑞 ≤ 𝜆,

we have

P(𝑋 ≤ −𝜇 + 𝑡) ≤ 𝑒𝜆(𝜇−𝑡) E[(1 − 𝑞)𝑋]

≤ exp
(
𝜆(𝜇 − 𝑡) − 𝑞𝜇 + 𝑞2Δ/2

)
≤ exp

(
𝜆(𝜇 − 𝑡) −

(
𝜆 − 𝜆

2

2

)
𝜇 + 𝜆2Δ

2

)
= exp

(
−𝜆𝑡 + 𝜆

2

2
(𝜇 + Δ)

)
We optimize by setting 𝜆 = 𝑡/(𝜇 + Δ) to obtain ≤ exp

(
−𝑡2

2(𝜇+Δ)

)
. □

Example 8.2.3 (Lower tails for triangle counts). Let 𝑋 be the number of triangles in
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𝐺 (𝑛, 𝑝). We have 𝜇 ≍ 𝑛3𝑝3 and Δ ≍ 𝑛4𝑝5. Fix a constant 𝛿 ∈ (0, 1]. Let 𝑡 = 𝛿E𝑋 .
We have

P(𝑋 ≤ (1 − 𝛿)E𝑋) ≤ exp
(
−Θ

(
−𝛿2𝑛6𝑝6

𝑛3𝑝3 + 𝑛4𝑝5

))
=

{
exp

(
−Θ𝛿 (𝑛2𝑝)

)
if 𝑝 ≳ 𝑛−1/2,

exp
(
−Θ𝛿 (𝑛3𝑝3)

)
if 𝑝 ≲ 𝑛−1/2.

The bounds are tight up to a constant in the exponent, since

P(𝑋 ≤ (1 − 𝛿)E𝑋) ≥ P(𝑋 = 0) =
{

exp
(
−Θ(𝑛2𝑝)

)
if 𝑝 ≳ 𝑛−1/2,

exp
(
−Θ(𝑛3𝑝3)

)
if 𝑝 ≲ 𝑛−1/2.

Example 8.2.4 (No corresponding Janson inequality for upper tails). Continuing
with 𝑋 being the number of triangles of 𝐺 (𝑛, 𝑝), from on the above lower tail results,
we might expect P(𝑋 ≥ (1 + 𝛿)E𝑋) ≤ exp(−Θ𝛿 (𝑛2𝑝)), but actually this is false!

By planting a clique of size Θ(𝑛𝑝), we can force 𝑋 ≥ (1 + 𝛿)E𝑋 . Thus

P(𝑋 ≥ (1 + 𝛿)E𝑋) ≥ 𝑝Θ𝛿 (𝑛2𝑝2)

which is much bigger than exp
(
−Θ(𝑛2𝑝)

)
. The above is actually the truth (Kahn–

DeMarco 2012 and Chatterjee 2012):

P(𝑋 ≥ (1 + 𝛿)E𝑋) = 𝑝Θ𝛿 (𝑛2𝑝2) if 𝑝 ≳
log 𝑛
𝑛

,

but the proof is much more intricate. Recent results allow us to understand the exact
constant in the exponent though new developments in large deviation theory. The
current state of knowledge is summarized below.

Theorem 8.2.5 (Harel, Mousset, Samotij 2022)
Let 𝑋 be the number of triangles in 𝐺 (𝑛, 𝑝) with 𝑝 = 𝑝𝑛 satisfying 𝑛−1/2 ≪ 𝑝 ≪ 1,

− logP(𝑋 ≥ (1 + 𝛿)E𝑋) ∼ min
{
𝛿

3
,
𝛿2/3

2

}
𝑛2𝑝2 log(1/𝑝),

and for 𝑛−1 log 𝑛 ≪ 𝑝 ≪ 𝑛−1/2,

− logP(𝑋 ≥ (1 + 𝛿)E𝑋) ∼ 𝛿2/3

2
𝑛2𝑝2 log(1/𝑝).

Remark 8.2.6. The leading constants were determined by Lubetzky and Zhao (2017)
by solving an associated variational problem. Earlier results, starting with Chatter-
jee and Varadhan (2011) and Chatterjee and Dembo (2016) prove large deviation
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frameworks that gave the above theorem for sufficiently slowly decaying 𝑝 ≥ 𝑛−𝑐.

For the corresponding problem for lower tails, see Kozma and Samotĳ (2023) for an
approach using relative entropy that reduces the rate problem to a variational problem.
The exact leading constant is known only for sufficiently small 𝛿 > 0, where the answer
is given by “replica symmetry”, meaning that the exponential rate is given by a uniform
decrement in edge densities for the random graph. In contrast, for 𝛿 close to 1, we
expect (though cannot prove) that the typical structure of a conditioned random graph
is close to a two-block model (Zhao 2017).

8.3 Chromatic number of a random graph

Question 8.3.1
What is the chromatic number of 𝐺 (𝑛, 1/2)?

In Section 4.4, we used the second moment method to find the clique number 𝜔 of
𝐺 (𝑛, 1/2). We saw that, with probability 1 − 𝑜(1), the clique number is concentrated
on two values, and in particular,

𝜔(𝐺 (𝑛, 1/2)) ∼ 2 log2 𝑛 whp.

The independence number 𝜶(𝑮) is the size of the largest independent set in 𝐺. The
independence number 𝛼(𝐺) is the equal to the clique number the complement of
𝐺. Since 𝐺 (𝑛, 1/2) and its graph complement have the same distribution, we have
𝛼(𝐺 (𝑛, 1/2)) ∼ 2 log2 𝑛 whp as well.

Using the following lower bound on the chromatic number 𝜒(𝐺):

𝜒(𝐺) ≥ |𝑉 (𝐺) |
𝛼(𝐺)

(since each color class is an independent set), we obtain that

𝜒(𝐺 (𝑛, 1/2)) ≥ (1 + 𝑜(1))𝑛
log2 𝑛

whp.

The following landmark theorem shows that the above lower bound on 𝜒(𝐺 (𝑛, 1/2))
is asymptotically tight.

124

https://mathscinet.ams.org/mathscinet-getitem?mr=4546629
https://mathscinet.ams.org/mathscinet-getitem?mr=3603970


MIT OCW: Probabilistic Methods in Combinatorics — Yufei Zhao

8.3 Chromatic number of a random graph

Theorem 8.3.2 (Chromatic number of a random graph — Bollobás 1988)
With probability 1 − 𝑜(1),

𝜒(𝐺 (𝑛, 1/2)) ∼ 𝑛

2 log2 𝑛
.

Recall that 𝜔(𝐺 (𝑛, 1/2)) is typically concentrated around the point 𝑘 where the ex-
pected number of 𝑘-cliques

(𝑛
𝑘

)
2−(𝑘2) is neither too large nor too close to zero. The

next lemma show that this probability drops very quickly when we decrease 𝑘 even by
a constant.

Lemma 8.3.3
Let 𝑘0 = 𝑘0(𝑛) be the largest possible integer 𝑘 so that

(𝑛
𝑘

)
2−(𝑘2) ≥ 1. Then

P(𝛼(𝐺 (𝑛, 1/2)) < 𝑘0 − 3) ≤ 𝑒−𝑛2−𝑜 (1)

Note that there is a trivial lower bound of 2−(𝑛2) coming from an empty graph.

Proof. Let us prove the equivalent claim

P(𝜔(𝐺 (𝑛, 1/2)) < 𝑘0 − 3) ≤ 𝑒−𝑛2−𝑜 (1)
.

Let 𝜇𝑘 :=
(𝑛
𝑘

)
2−(𝑘2) . For 𝑘 ∼ 𝑘0(𝑛) ∼ 2 log2 𝑛, we have

𝜇𝑘+1
𝜇𝑘

=

( 𝑛
𝑘+1

)(𝑛
𝑘

) 2−𝑘 ∼ 𝑛

𝑘
2−(2+𝑜(1)) log2 𝑛 =

1
𝑛1−𝑜(1) .

Let 𝑘 = 𝑘0−3 and applying Setup 8.1.1 for Janson inequality with 𝑋 being the number
of 𝑘-cliques, we have

𝜇 = 𝜇𝑘 > 𝑛
3−𝑜(1)

and (details of the computation omitted)

Δ ∼ 𝜇2 𝑘
4

𝑛2 = 𝑛4−𝑜(1) .

So Δ > 𝜇 for sufficiently large 𝑛, and we can apply Janson inequality II:

P(𝜔(𝐺 (𝑛, 1/2)) < 𝑘) = P(𝑋 = 0) ≤ 𝑒−𝑛2−𝑜 (1)
. □

Proof of Theorem 8.3.2. The lower bound proof was discussed before the theorem
statement. For the upper bound we will give a strategy to properly color the random
graph with (2+ 𝑜(1)) log2 𝑛 colors. We will proceed by taking out independent sets of
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size ∼ 2 log2 𝑛 iteratively until 𝑜(𝑛/log 𝑛) vertices remain, at which point we can use
a different color for each remaining vertex.

Note that after taking out the first independent set of size ∼ 2 log2 𝑛, we cannot claim
that the remaining graph is still distributed as 𝐺 (𝑛, 1/2). It is not. Our selection of the
vertices was dependent on the random graph. We are not allowed to “resample” the
edges after the first selection.

The strategy is to apply the previous lemma to see that every large enough subset of
vertices has an independent set of size ∼ 2 log2 𝑛.

Let 𝐺 ∼ 𝐺 (𝑛, 1/2). Let 𝑚 =
⌊
𝑛/(log 𝑛)2⌋ , say. For any set 𝑆 of 𝑚 vertices, the

induced subgraph 𝐺 [𝑆] has the distribution of 𝐺 (𝑚, 1/2). By Lemma 8.3.3, for

𝑘 = 𝑘0(𝑚) − 3 ∼ 2 log2𝑚 ∼ 2 log2 𝑛,

we have
P(𝛼(𝐺 [𝑆]) < 𝑘) = 𝑒−𝑚2−𝑜 (1)

= 𝑒−𝑛
2−𝑜 (1)

.

Taking a union bound over all
( 𝑛
𝑚

)
< 2𝑛 such sets 𝑆,

P(there is an 𝑚-vertex subset 𝑆 with 𝛼(𝐺 [𝑆]) < 𝑘) < 2𝑛𝑒−𝑛
2−𝑜 (1)

= 𝑜(1).

So the following statement is true in 𝐺 (𝑛, 1/2) with probability 1 − 𝑜(1):

(*) Every 𝑚-vertex subset contains a 𝑘-vertex independent set.

Assume that 𝐺 has property (*). Now we execute our strategy at the beginning of the
proof:

1. While ≥ 𝑚 vertices remain:

i. Find an independent set of size 𝑘 , and let it form its own color class

ii. Remove these 𝑘 vertices

2. Color the remaining < 𝑚 vertices each with a new color.

The result is a proper coloring. The number of colors used is

𝑛

𝑘
+ 𝑚 ∼ 𝑛

2 log2 𝑛
. □

Exercises
1. 3-AP-free probability. Determine, for all 0 < 𝑝 ≤ 0.99 (𝑝 is allowed to depend

on 𝑛), the probability that [𝑛] 𝑝 does not contain a 3-term arithmetic progression,
up to a constant factor in the exponent. (The form of the answer should be similar
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to the conclusion in class about the probability that 𝐺 (𝑛, 𝑝) is triangle-free. See
3 for notation.)

2. Prove that with probability 1 − 𝑜(1), the size of the largest subset of vertices of
𝐺 (𝑛, 1/2) inducing a triangle-free subgraph is Θ(log 𝑛).

3. Nearly perfect triangle factor, again. Using Janson inequalities this time, give
another solution to Problem 11 in the following generality.

a) Prove that for every 𝜀 > 0, there exists 𝐶𝜀 > 0 such that such that with
probability 1 − 𝑜(1), 𝐺 (𝑛, 𝐶𝜀𝑛−2/3) contains at least (1/3 − 𝜀)𝑛 vertex-
disjoint triangles.

b) (Optional) Compare the the dependence of the optimal 𝐶𝜀 on 𝜀 you obtain
using the method in Problem 11 versus this problem (don’t worry about
leading constant factors).

4. ★Threshold for extensions. Show that for every constant 𝐶 > 16/5, if 𝑛2𝑝5 >

𝐶 log 𝑛, then with probability 1 − 𝑜(1), every edge of 𝐺 (𝑛, 𝑝) is contained in a
𝐾4.

(Be careful, this event is not increasing, and so it is insufficient to just prove the result for one
specific 𝑝.)

5. Lower tails of small subgraph counts. Fix graph𝐻 and 𝛿 ∈ (0, 1]. Let 𝑋𝐻 denote
the number of copies of 𝐻 in 𝐺 (𝑛, 𝑝). Prove that for all 𝑛 and 0 < 𝑝 < 0.99,

P(𝑋𝐻 ≤ (1 − 𝛿)E𝑋𝐻) = 𝑒−Θ𝐻,𝛿 (Φ𝐻 ) where Φ𝐻 := min
𝐻′⊆𝐻:𝑒(𝐻′)>0

𝑛𝑣(𝐻
′) 𝑝𝑒(𝐻

′) .

Here the hidden constants in Θ𝐻,𝛿 may depend on 𝐻 and 𝛿 (but not on 𝑛 and 𝑝).

6. ★List chromatic number of a random graph. Show that the list chromatic number
of 𝐺 (𝑛, 1/2) is (1 + 𝑜(1)) 𝑛

2 log2 𝑛
with probability 1 − 𝑜(1).

The list-chromatic number (also called choosability) of a graph 𝐺 is defined to the minimum 𝑘

such that if every vertex of 𝐺 is assigned a list of 𝑘 acceptable colors, then there exists a proper
coloring of 𝐺 where every vertex is colored by one of its acceptable colors.
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