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10 Entropy

My greatest concern was what to call it. I thought of calling it “informa-
tion,” but the word was overly used, so I decided to call it “uncertainty.”
When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, “You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more
important, nobody knows what entropy really is, so in a debate you will
always have the advantage.”

Claude Shannon, 1971

In this chapter, we look at some neat and powerful applications of entropy to combi-
natorics. For a standard introduction to information theory, see the textbook by Cover
and Thomas.

10.1 Basic properties
We define the (binary) entropy of a discrete random variable as follows.

Definition 10.1.1
Given a discrete random variable 𝑋 taking values in 𝑆, with 𝑝𝑠 := P(𝑋 = 𝑠), its entropy
(or binary entropy to emphasis the base-2 logarithm) is defined to be

𝑯(𝑿) :=
∑︁
𝑠∈𝑆

−𝑝𝑠 log2 𝑝𝑠

(by convention if 𝑝𝑠 = 0 then the corresponding summand is set to zero).

Remark 10.1.2 (Base of the logarithm). It is also fine to use another base for the
logarithm, e.g., the natural log, as long as we are consistent throughout. There is some
combinatorial preference for base-2 due to its interpretation as counts bits. For certain
results, such as Pinsker’s inequality (which we will unfortunately not cover here), the
choice of the base does matter.
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Remark 10.1.3 (Information theoretic interpretation). Intuitively, 𝐻 (𝑋) measures
the amount of “surprise” in the randomness of 𝑋 . It can also be interpreted as the
amount of information learned by seeing the random variable 𝑋 . A more rigorous
interpretation of this intuition is given by the Shannon source coding theorem, which,
informally, says that the minimum number of bits needed to encode 𝑛 iid copies of 𝑋
is 𝑛𝐻 (𝑋) + 𝑜(𝑛).

Here are some basic properties. Throughout we only consider discrete random vari-
ables.

The proofs are all routine calculations. It will useful to understand the information
theoretic interpretations of these properties.

Lemma 10.1.4 (Uniform bound)

𝐻 (𝑋) ≤ log2 | support(𝑋) |,

with equality if and only if 𝑋 is uniformly distributed.

Proof. Let function 𝑓 (𝑥) = −𝑥 log2 𝑥 is concave for 𝑥 ∈ [0, 1]. Let 𝑆 = support(𝑋).
Then

𝐻 (𝑋) =
∑︁
𝑠∈𝑆

𝑓 (𝑝𝑠) ≤ |𝑆 | 𝑓
(

1
|𝑆 |

∑︁
𝑠∈𝑆

𝑝𝑠

)
= |𝑆 | 𝑓

(
1
|𝑆 |

)
= log2 |𝑆 | . □

We write 𝐻 (𝑋,𝑌 ) for the entropy of the joint random variables (𝑋,𝑌 ). In other words,
letting 𝑍 = (𝑋,𝑌 ),

𝑯(𝑿,𝒀) := 𝐻 (𝑍) =
∑︁
(𝑥,𝑦)

−P(𝑋 = 𝑥,𝑌 = 𝑦) log2 P(𝑋 = 𝑥,𝑌 = 𝑦).

We can similarly write 𝐻 (𝑋1, . . . , 𝑋𝑛) for joint entropy.

Lemma 10.1.5 (Independence)
If 𝑋 and 𝑌 are independent random variables, then

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ).
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Proof.

𝐻 (𝑋,𝑌 ) =
∑︁
(𝑥,𝑦)

−P(𝑋 = 𝑥,𝑌 = 𝑦) log2 P(𝑋 = 𝑥,𝑌 = 𝑦)

=
∑︁
(𝑥,𝑦)

−𝑝𝑥 𝑝𝑦 log2(𝑝𝑥 𝑝𝑦)

=
∑︁
(𝑥,𝑦)

−𝑝𝑥 𝑝𝑦 (log2 𝑝𝑥 + log2 𝑝𝑦)

=
∑︁
𝑥

−𝑝𝑥 log2 𝑝𝑥 +
∑︁
𝑦

−𝑝𝑦 log2 𝑝𝑦 = 𝐻 (𝑋) + 𝐻 (𝑌 ). □

Definition 10.1.6 (Conditional entropy)
Given jointly distributed random variables 𝑋 and 𝑌 , define

𝑯(𝑿 |𝒀) := E𝑦 [𝐻 (𝑋 |𝑌 = 𝑦)]
=

∑︁
𝑦

P(𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦)

=
∑︁
𝑦

P(𝑌 = 𝑦)
∑︁
𝑥

−P(𝑋 = 𝑥 |𝑌 = 𝑦) log2 P(𝑋 = 𝑥 |𝑌 = 𝑦)

(each line unpacks the previous line. In the summations, 𝑥 and 𝑦 range over the
supports of 𝑋 and 𝑌 respectively).

Intuitively, the conditional entropy 𝐻 (𝑋 |𝑌 ) measures the amount of additional in-
formation in 𝑋 not contained in 𝑌 . This is intuition is also captured by the next
lemma.

Some important special cases:

• If 𝑋 = 𝑌 , or 𝑋 = 𝑓 (𝑌 ), then 𝐻 (𝑋 |𝑌 ) = 0.

• If 𝑋 and 𝑌 are independent, then 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋)

• If 𝑋 and 𝑌 are conditionally independent on 𝑍 , then 𝐻 (𝑋,𝑌 |𝑍) = 𝐻 (𝑋 |𝑍) +
𝐻 (𝑌 |𝑍) and 𝐻 (𝑋 |𝑌, 𝑍) = 𝐻 (𝑋 |𝑍).

Lemma 10.1.7 (Chain rule)

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋)

Proof. Writing 𝑝(𝑥, 𝑦) = P(𝑋 = 𝑥,𝑌 = 𝑦), etc., we have by Bayes’s rule

𝑝(𝑥 |𝑦)𝑝(𝑦) = 𝑝(𝑥, 𝑦),
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and so

𝐻 (𝑋 |𝑌 ) := E𝑦 [𝐻 (𝑋 |𝑌 = 𝑦)] =
∑︁
𝑦

−𝑝(𝑦)
∑︁
𝑥

𝑝(𝑥 |𝑦) log2 𝑝(𝑥 |𝑦)

=
∑︁
𝑥,𝑦

−𝑝(𝑥, 𝑦) log2
𝑝(𝑥, 𝑦)
𝑝(𝑦)

=
∑︁
𝑥,𝑦

−𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦) +
∑︁
𝑦

𝑝(𝑦) log2 𝑝(𝑦)

= 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ). □

Lemma 10.1.8 (Subadditivity)
𝐻 (𝑋,𝑌 ) ≤ 𝐻 (𝑋) + 𝐻 (𝑌 ), and more generally,

𝐻 (𝑋1, . . . , 𝑋𝑛) ≤ 𝐻 (𝑋1) + · · · + 𝐻 (𝑋𝑛).

Proof. Let 𝑓 (𝑡) = log2(1/𝑡), which is convex. Then

𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ) =
∑︁
𝑥,𝑦

(
−𝑝(𝑥, 𝑦) log2 𝑝(𝑥) − 𝑝(𝑥, 𝑦) log2 𝑝(𝑦) + 𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦)

)
=

∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) log2
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

=
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑓
(
𝑝(𝑥)𝑝(𝑦)
𝑝(𝑥, 𝑦)

)
≥ 𝑓

(∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑝(𝑥)𝑝(𝑦)
𝑝(𝑥, 𝑦)

)
= 𝑓 (1) = 0

More generally, by iterating the above inequality for two random variables, we have

𝐻 (𝑋1, . . . , 𝑋𝑛) ≤ 𝐻 (𝑋1, . . . , 𝑋𝑛−1) + 𝐻 (𝑋𝑛)
≤ 𝐻 (𝑋1, . . . , 𝑋𝑛−2) + 𝐻 (𝑋𝑛−1) + 𝐻 (𝑋𝑛)
≤ · · · ≤ 𝐻 (𝑋1) + · · · + 𝐻 (𝑋𝑛). □

Remark 10.1.9 (Mutual information). The nonnegative quantity

𝐼 (𝑋;𝑌 ) := 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )

is called mutual information. Intuitively, it measures the amount of common infor-
mation between 𝑋 and 𝑌 .
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Lemma 10.1.10 (Dropping conditioning)
𝐻 (𝑋 |𝑌 ) ≤ 𝐻 (𝑋) and more generally,

𝐻 (𝑋 |𝑌, 𝑍) ≤ 𝐻 (𝑋 |𝑍).

Proof. By chain rule and subadditivity, we have

𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ) ≤ 𝐻 (𝑋).

The inequality conditioning on 𝑍 follows since the above implies that

𝐻 (𝑋 |𝑌, 𝑍 = 𝑧) ≥ 𝐻 (𝑋 |𝑍 = 𝑧)

holds for every 𝑧, and taking expectation of 𝑧 yields 𝐻 (𝑋 |𝑌, 𝑍) ≤ 𝐻 (𝑋 |𝑍). □

Remark 10.1.11. A related theorem is the data processing inequality: 𝐻 (𝑋 | 𝑓 (𝑌 )) ≥
𝐻 (𝑋 |𝑌 ) for any function 𝑓 . More generally, 𝑓 can be random. In other words, if
𝑋 → 𝑌 → 𝑍 is a Markov chain, then 𝐻 (𝑋 |𝑍) ≥ 𝐻 (𝑋 |𝑌 ) (exercise: prove this).

Here are some simple applications of entropy to tail bounds.

Let us denote the entropy of a Bernoulli random variable by

𝐻 (𝑝) := 𝐻 (Bernoulli(𝑝)) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝).

0 𝑝 1
0

1

𝐻 (𝑝)

(This notation 𝐻 (·) is standard but unfortunately ambiguous: 𝐻 (𝑋) versus 𝐻 (𝑝). It
is usually clear from context which is meant.)

Theorem 10.1.12
If 0 < 𝑘 ≤ 𝑛/2, then ∑︁

0≤𝑖≤𝑘

(
𝑛

𝑖

)
≤ 2𝐻 (𝑘/𝑛)𝑛 =

(𝑛
𝑘

) 𝑘 ( 𝑛

𝑛 − 𝑘

)𝑛−𝑘
.
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This bound can be established using our proof technique for Chernoff bound by
applying Markov’s inequality to the moment generating function:∑︁

0≤𝑖≤𝑘

(
𝑛

𝑖

)
≤ (1 + 𝑥)𝑛

𝑥𝑘
for all 𝑥 ∈ [0, 1] .

The infimum of the RHS over 𝑥 ∈ [0, 1] is precisely 2𝐻 (𝑘/𝑛)𝑛.

Now let us give a purely information theoretic proof to get some practice with entropy.

Proof. Let (𝑋1, . . . , 𝑋𝑛) ∈ {0, 1}𝑛 be chosen uniformly conditioned on 𝑋1+ · · · +𝑋𝑛 ≤
𝑘 . Then

log2

∑︁
0≤𝑖≤𝑘

(
𝑛

𝑖

)
= 𝐻 (𝑋1, . . . , 𝑋𝑛) ≤ 𝐻 (𝑋1) + · · · + 𝐻 (𝑋𝑛).

Each 𝑋𝑖 is a Bernoulli with probability P(𝑋𝑖 = 1). Note that conditioned on 𝑋1 +
· · · + 𝑋𝑛 = 𝑚, one has P(𝑋𝑖 = 1) = 𝑚/𝑛. Varying over 𝑚 ≤ 𝑘 ≤ 𝑛/2, we find
P(𝑋𝑖 = 1) ≤ 𝑘/𝑛, so 𝐻 (𝑋𝑖) ≤ 𝐻 (𝑘/𝑛). Hence

log2

∑︁
0≤𝑖≤𝑘

(
𝑛

𝑖

)
≤ 𝐻 (𝑘/𝑛)𝑛. □

Remark 10.1.13. One can extend the above proof to bound the tail of Binomial(𝑛, 𝑝)
for any 𝑝. The result can be expressed in terms of the relative entropy (also known
as the Kullback–Leibler divergence between two Bernoulli random variables). More
concretely, for 𝑋 ∼ Binomial(𝑛, 𝑝), one has

logP(𝑋 ≤ 𝑛𝑞)
𝑛

≤ −𝑞 log
𝑞

𝑝
− (1 − 𝑞) log

1 − 𝑞
1 − 𝑝 for all 0 ≤ 𝑞 ≤ 𝑝,

and

logP(𝑋 ≥ 𝑛𝑞)
𝑛

≤ −𝑞 log
𝑞

𝑝
− (1 − 𝑞) log

1 − 𝑞
1 − 𝑝 for all 𝑝 ≤ 𝑞 ≤ 1.

10.2 Permanent, perfect matchings, and Steiner
triple systems

Permanent
We define the permanent of an 𝑛 × 𝑛 matrix 𝐴 by

per 𝐴 :=
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

𝑎𝑖,𝜎(𝑖) .
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The formula for the permanent is simply that of the determinant without the sign factor:

det 𝐴 :=
∑︁
𝜎∈𝑆𝑛

sgn(𝜎)
𝑛∏
𝑖=1

𝑎𝑖𝜎𝑖 .

We’ll consider {0, 1}-valued matrices. If 𝐴 is the bipartite adjacency matrix of a
bipartite graph, then

per 𝐴 = the number of perfect matchings.

The following theorem gives an upper bound on the number of perfect matchings of
a bipartite graph with a given degree distribution. It was conjectured by Minc (1963)
and proved by Brégman (1973).

Theorem 10.2.1 (Brégman–Minc inequality)
Let 𝐴 = (𝑎𝑖 𝑗 ) ∈ {0, 1}𝑛×𝑛, whose 𝑖-th row has sum 𝑑𝑖. Then

per 𝐴 ≤
𝑛∏
𝑖=1

(𝑑𝑖!)1/𝑑𝑖

Note that equality is attained when 𝐴 consists diagonal blocks of 1’s (corresponding
to perfect matchings in a bipartite graph of the form 𝐾𝑑1,𝑑1 ⊔ · · · ⊔ 𝐾𝑑𝑡 ,𝑑𝑡 ).

Let 𝜎 be a uniform random permutation of [𝑛] conditioned on 𝑎𝑖𝜎𝑖 = 1 for all 𝑖 ∈ [𝑛].
Then

log2 per 𝐴 = 𝐻 (𝜎) = 𝐻 (𝜎1, . . . , 𝜎𝑛) = 𝐻 (𝜎1) +𝐻 (𝜎2 |𝜎1) + · · ·+𝐻 (𝜎𝑛 |𝜎1, . . . , 𝜎𝑛−1).

We have
𝐻 (𝜎𝑖 |𝜎1, . . . , 𝜎𝑖−1) ≤ 𝐻 (𝜎𝑖) ≤ log2 |support𝜎𝑖 | = log2 𝑑𝑖,

but this step would be too lossy. In fact, what we just did amounts to a naive worst
case counting argument.

The key new idea is to reveal the chosen entries in a uniform random order.

Proof. (Radhakrishnan 1997) Let 𝜎 be as earlier. Consider a permutation of 𝜏 repre-
senting an ordering of the rows of the matrix. Say that 𝑖 appears before 𝑗 if 𝜏𝑖 < 𝜏𝑗 .

Let 𝑁𝑖 = 𝑁𝑖 (𝜎, 𝜏) be the number of ones on row 𝑖 that does not lie in the same column
as some entry ( 𝑗 , 𝜎𝑗 ) that comes before 𝑖. (Intuitively, 𝑁𝑖 is the number of “greedily
available” choices for 𝜎𝑖 before it is revealed.)
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For any 𝜏, the chain rule gives

𝐻 (𝜎) =
𝑛∑︁
𝑖=1

𝐻
(
𝜎𝑖

�� 𝜎𝑗 : 𝑗 comes before 𝑖
)
,

and the uniform bound gives

𝐻
(
𝜎𝑖

�� 𝜎𝑗 : 𝑗 comes before 𝑖
)
≤ E𝜎 log2 𝑁𝑖 .

Let 𝜏 vary uniformly over all permutations. Then,

𝐻 (𝜎) ≤
𝑛∑︁
𝑖=1
E𝜎,𝜏 log2 𝑁𝑖 .

For any fixed 𝜎, as 𝜏 varies uniformly over all permutations of [𝑛], 𝑁𝑖 varies uniformly
over [𝑑𝑖]. (Why?) Thus

E𝜏 log2 𝑁𝑖 =
log2 1 + · · · + log2 𝑑𝑖

𝑑𝑖
=

log2(𝑑𝑖!)
𝑑𝑖

.

Taking expectation over 𝜎 and summing over 𝑖 yields

log2 per 𝐴 = 𝐻 (𝜎) ≤
𝑛∑︁
𝑖=1
E𝜎,𝜏 log2 𝑁𝑖 ≤

𝑛∑︁
𝑖=1

log2(𝑑𝑖!)
𝑑𝑖

. □

Corollary 10.2.2 (Kahn and Lovász)
Let 𝐺 be a graph. Let 𝑑𝑣 denote the degree of 𝑣. Then the number pm(𝐺) of perfect
matchings of 𝐺 satisfies

pm(𝐺) ≤
∏

𝑣∈𝑉 (𝐺)
(𝑑𝑣!)1/(2𝑑𝑣) =

∏
𝑣∈𝑉 (𝐺)

pm(𝐾𝑑𝑣 ,𝑑𝑣 )1/(2𝑑𝑣) .

Proof. (Alon and Friedland 2008) Brégman’s theorem implies the statement for bipar-
tite graphs𝐺 (by considering a bipartition on𝐺⊔𝐺). For the extension of non-bipartite
𝐺, one can proceed via a combinatorial argument that pm(𝐺 ⊔ 𝐺) ≤ pm(𝐺 × 𝐾2),
which is left as an exercise. □
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The maximum number of Hamilton paths in a tournament

Question 10.2.3
What is the maximum possible number of directed Hamilton paths in an 𝑛-vertex
tournament?

Earlier we saw that a uniformly random tournament has 𝑛!/2𝑛−1 Hamilton paths in
expectation, and hence there is some tournament with at least this many Hamilton
paths. This result, due to Szele, is the earliest application of the probabilistic method.

Using Brégman’s theorem, Alon proved a nearly matching upper bound.

Theorem 10.2.4 (Alon 1990)
Every 𝑛-vertex tournament has at most 𝑂 (𝑛3/2 · 𝑛!/2𝑛) Hamilton paths.

Remark 10.2.5. The upper bound has been improved to 𝑂 (𝑛3/2−𝛾𝑛!/2𝑛) for some
small constant 𝛾 > 0 (Friedgut and Kahn 2005), while the lower bound 𝑛!/2𝑛−1 has
been improved by a constant factor (Adler, Alon, and Ross 2001, Wormald 2004). It
remains open to close this 𝑛𝑂 (1) factor gap.

We first prove an upper bound on the number of Hamilton cycles.

Theorem 10.2.6 (Alon 1990)
Every 𝑛-vertex tournament has at most 𝑂 (

√
𝑛 · 𝑛!/2𝑛) Hamilton cycles.

Proof. Let 𝐴 be an 𝑛 × 𝑛 matrix whose (𝑖, 𝑗) entry is 1 if 𝑖 → 𝑗 is an edge of the
tournament and 0 otherwise. Let 𝑑𝑖 be the sum of the 𝑖-th row. Then per 𝐴 counts the
number of 1-factors (spanning disjoint unions of directed cycles) of the tournament.
So by Brégman’s theorem, we have

number of Hamilton cycles ≤ per 𝐴 ≤
𝑛∏
𝑖=1

(𝑑𝑖!)1/𝑑1 .

One can check (omitted) that the function 𝑔(𝑥) = (𝑥!)1/𝑥 is log-concave, i.e, 𝑔(𝑛)𝑔(𝑛+
2) ≥ 𝑔(𝑛 + 1)2 for all 𝑛 ≥ 0. Thus, by a smoothing argument, among sequences
(𝑑1, . . . , 𝑑𝑛) with sum

(𝑛
2
)
, the RHS above is maximized when all the 𝑑𝑖’s are within 1

of each other, which, by Stirling’s formula, gives 𝑂 (
√
𝑛 · 𝑛!/2𝑛). □

Theorem 10.2.4 then follows by applying the above bound with the following lemma.
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Lemma 10.2.7
Given an 𝑛-vertex tournament with 𝑃 Hamilton paths, one can add a new vertex to
obtain a (𝑛 + 1)-vertex tournament with at least 𝑃/4 Hamilton cycles.

Proof. Add a new vertex and orient its incident edges uniformly at random. For every
Hamilton path in the 𝑛-vertex tournament, there is probability 1/4 that it can be closed
up into a Hamilton cycle through the new vertex. The claim then follows by linearity
of expectation. □

Steiner triple systems

Definition 10.2.8 (Steiner triple system)
A Steiner triple system (STS) of order 𝑛 is a 3-uniform hypergraph on 𝑛 vertices where
every pair of vertices is contained in exactly one triple.

Equivalently: an STS is a decomposition of a complete graph 𝐾𝑛 into edge-disjoint
triangles.

Example: the Fano plane is an STS of order 7.

It is a classic result that an STS of order 𝑛 exists if and only if 𝑛 ≡ 1 or 3 mod 6. It is
not hard to see that this is necessary, since if an STS of order 𝑛 exsits, then

(𝑛
2
)

should
be divisible by 3, and 𝑛 − 1 should be divisible by 2. Keevash (2014+) obtained a
significant breakthrough proving the existence of more general designs.

Question 10.2.9
How many STS are there on 𝑛 labeled vertices?

We shall prove the following result.

Theorem 10.2.10 (Upper bound on the number of STS — Linial and Luria 2013)
The number of Steiner triple systems on 𝑛 labeled vertices is at most(

𝑛

𝑒2 + 𝑜(1)

)𝑛2

.

Remark 10.2.11. Keevash (2018) proved a matching lower bound when 𝑛 ≡ 1, 3
(mod 6).

Proof. As in the earlier proof, the idea is to reveal the triples in a random order.
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Let 𝑋 denote a uniformly chosen STS on 𝑛 vertices. We wish to upper bound 𝐻 (𝑋).

We encode 𝑋 as a tuple (𝑋𝑖 𝑗 )𝑖< 𝑗 ∈ [𝑛] (𝑛2) where 𝑋𝑖 𝑗 is the label of the unique vertex
that forms a triple with 𝑖 and 𝑗 in the STS. Here whenever we write 𝑖 𝑗 we mean the
unordered pair {𝑖, 𝑗}, i.e., an edge of 𝐾𝑛.

Let 𝑦 = (𝑦𝑖 𝑗 )𝑖< 𝑗 ∈ [0, 1] (𝑛2) , and we order the edges of 𝐾𝑛 in decreasing 𝑦𝑖 𝑗 :

𝑘𝑙 ≺ 𝑖 𝑗 if 𝑦𝑘𝑙 > 𝑦𝑖 𝑗 .

By the chain rule,
𝐻 (𝑋) =

∑︁
𝑖 𝑗

𝐻
(
𝑋𝑖 𝑗

�� 𝑋𝑘𝑙 : 𝑘𝑙 ≺ 𝑖 𝑗
)
.

Let

𝑁𝑖 𝑗 = 𝑁𝑖 𝑗 (𝑋, 𝑦) = the number of possibilities for 𝑋𝑖 𝑗 after revealing 𝑋𝑘𝑙 for all 𝑘𝑙 ≺ 𝑖 𝑗 .

By the uniform bound, we have

𝐻 (𝑋) ≤
∑︁
𝑖 𝑗

E𝑋 log2 𝑁𝑖 𝑗 .

Now let 𝑦 = (𝑦𝑖 𝑗 )𝑖< 𝑗 ∈ [0, 1] (𝑛2) be chosen uniformly at random. We have

𝐻 (𝑋) ≤
∑︁
𝑖 𝑗

E𝑋E𝑦 log2 𝑁𝑖 𝑗 .

Write 𝑦−𝑖 𝑗 ∈ [0, 1] (𝑛2)−1 to mean 𝑦 with the 𝑖 𝑗-coordinate removed. Let us bound
E𝑦−𝑖 𝑗 log2 𝑁𝑖 𝑗 as a function of 𝑦𝑖 𝑗 .

We define 𝑖 𝑗 shows up first in its triple to be the event that 𝑖 𝑗 ≺ 𝑖𝑘, 𝑗 𝑘 where 𝑘 = 𝑋𝑖 𝑗 .
We have, for any fixed 𝑋 ,

P𝑦−𝑖 𝑗 (𝑖 𝑗 shows up first in its triple) = P𝑦−𝑖 𝑗 (𝑖 𝑗 ≺ 𝑖𝑘, 𝑗 𝑘) = P𝑦−𝑖 𝑗 (𝑦𝑖 𝑗 > 𝑦𝑖𝑘 , 𝑦 𝑗 𝑘 ) = 𝑦2
𝑖 𝑗 .

If 𝑖 𝑗 does not show up first in its triple, then 𝑋𝑖 𝑗 has exactly one possibility (namely 𝑘)
by the time it gets revealed, and so 𝑁𝑖 𝑗 = 1 and log2 𝑁𝑖 𝑗 = 0. Thus

E𝑦−𝑖 𝑗 log2 𝑁𝑖 𝑗 = 𝑦
2
𝑖 𝑗E𝑦−𝑖 𝑗

[
log2 𝑁𝑖 𝑗

�� 𝑖 𝑗 shows up first in its triple
]

≤ 𝑦2
𝑖 𝑗 log2 E𝑦−𝑖 𝑗

[
𝑁𝑖 𝑗

�� 𝑖 𝑗 shows up first in its triple
]
.

Now we use linearity of expectations (over 𝑦−𝑖 𝑗 with fixed 𝑋). For each 𝑠 ∈ [𝑛] \
{𝑖, 𝑗 , 𝑘}, if 𝑠 is available as a possibility for 𝑋𝑖 𝑗 by the time 𝑋𝑖 𝑗 is revealed, then none
of the six edges of 𝐾𝑛 consisting of the two triangle 𝑖𝑠𝑋𝑖 𝑗 and 𝑗 𝑠𝑋 𝑗 𝑠 may occur before
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𝑋𝑖 𝑗 ; the latter event occurs with probability 𝑦6
𝑖 𝑗

. So

E𝑦−𝑖 𝑗
[
𝑁𝑖 𝑗

�� 𝑖 𝑗 shows up first in its triple
]
≤ 1 + (𝑛 − 3)𝑦6

𝑖 𝑗 .

Thus

E𝑦 log2 𝑁𝑖 𝑗 ≤
∫ 1

0
𝑦2
𝑖 𝑗 log2(1 + (𝑛 − 3)𝑦3

𝑖 𝑗 ) 𝑑𝑦𝑖 𝑗 =
1
3

∫ 1

0
log2(1 + (𝑛 − 3)𝑡2) 𝑑𝑡.

This integral actually has a closed-form antiderivative (e.g., check Mathematica/Wolfram
Alpha), but it suffices for us to obtain the asymptotics. We have∫ 1

0
log2

(
1

𝑛 − 3
+ 𝑡2

)
𝑑𝑡 →

∫ 1

0
log2(𝑡2) 𝑑𝑡 = −2 log2 𝑒

as 𝑛→ ∞ by the monotone convergence theorem. Thus

E𝑦 log2 𝑁𝑖 𝑗 ≤
log2(𝑛/𝑒2) + 𝑜(1)

3
.

It follows therefore that the log-number of STS on 𝑛 vertices is

𝐻 (𝑋) ≤
∑︁
𝑖 𝑗

E𝑋E𝑦 log2 𝑁𝑖 𝑗 ≤
(
𝑛

2

) (
log2(𝑛/𝑒2) + 𝑜(1)

3

)
=
𝑛2

6
log2

(
𝑛

𝑒2 + 𝑜(1)

)
. □

Remark 10.2.12 (Guessing the formula). Here is perhaps how we might have guessed
the formula for the number of STSs. Suppose we select 1

3
(𝑛
2
)

triangles in 𝐾𝑛 indepen-
dently at random. What is the probability that every edge is contained in exactly one
triangle? Each edge is contained one triangle on expectation, and so by the Poisson
approximation, the probability that a single fixed edge is contained in exactly one tri-
angle is 1/𝑒 + 𝑜(1). Now let us pretend as if all the edges behave independently (!) —
the probability that every edge is contained in exactly one triangle is (1/𝑒 + 𝑜(1)) (𝑛2) .
This would then lead us to guessing that the number of STSs being

1(
1
3
(𝑛
2
) )

!

(
𝑛

3

) 1
3 (𝑛2) (

1
𝑒
+ 𝑜(1)

) (𝑛2)
=

((
𝑛2

6𝑒

)−𝑛2/6 (
𝑛3

6

)𝑛2/6 (
1
𝑒

)𝑛2/2
)1+𝑜(1)

=

(
𝑛

𝑒2 + 𝑜(1)

)𝑛2/3
.

Here is another heuristic for getting the formula, and this time this method can actually
be turned into a proof of matching lower bound on the number of STSs, though with
a lot of work (Keevash 2018). Suppose we remove triangles from 𝐾𝑛 one at a time.
After 𝑘 triangles have been removed, the number of edges remaining is

(𝑛
2
)
− 3𝑘 . Let

us pretend that the remaining edges were randomly distributed. Then the number of
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triangles should be about (
𝑛

3

) (
1 − 3𝑘(𝑛

2
) )3

∼ 36
𝑛3

(
1
3

(
𝑛

2

)
− 𝑘

)3

If we multiply the above quantity over 0 ≤ 𝑘 < 1
3
(𝑛
2
)
, and then divide by

(
1
3
(𝑛
2
) )

! to
account for the ordering of the triangles, we get(

36
𝑛3

)𝑛2/6 (
1
3
(𝑛
2
) )

!3(
1
3
(𝑛
2
) )

!
≈

(
𝑛

𝑒2 + 𝑜(1)

)𝑛2/3
.

10.3 Sidorenko’s inequality
Given graphs 𝐹 and 𝐺, a graph homomorphism from 𝐹 to 𝐺 is a map 𝜙 : 𝑉 (𝐹) →
𝑉 (𝐺) of vertices that sends edges to edges, i.e., 𝜙(𝑢)𝜙(𝑣) ∈ 𝐸 (𝐺) for all 𝑢𝑣 ∈ 𝐸 (𝐹).

Let
hom(𝐹, 𝐺) = the number of graph homomorphisms from 𝐹 to 𝐺.

Define the homomorphism density (the 𝑯-density in 𝑮) by

𝑡 (𝐹, 𝐻) = hom(𝐹, 𝐺)
𝑣(𝐺)𝑣(𝐹)

= P(a uniform random map 𝑉 (𝐹) → 𝑉 (𝐺) is a graph homomorphism 𝐹 → 𝐺)

In this section, we are interested in the regime of fixed 𝐹 and large 𝐺, in which case
almost all maps 𝑉 (𝐹) → 𝑉 (𝐺) are injective, so that there is not much difference
between homomorphisms and subgraphs. More precisely,

hom(𝐹, 𝐺) = aut(𝐹) (#copies of 𝐹 in 𝐺 as a subgraph) +𝑂𝐹 (𝑣(𝐺)𝑣(𝐹)−1).

where aut(𝐹) is the number of automorphisms of 𝐹.

Inequalities between graph homomorphism densities is a central topic in extremal
graph theory. For example, see Chapter 5 of my book Graph Theory and Additive
Combinatorics. Much of the rest of this chapter is adapted from §5.5 of the book.

Question 10.3.1
Given a fixed graph 𝐹 and constant 𝑝 ∈ [0, 1], what is the minimum possible 𝐹-density
in a graph with edge density at least 𝑝?
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The 𝐹-density in the random graph𝐺 (𝑛, 𝑝) is 𝑝𝑒(𝐹)+𝑜(1). Here 𝑝 is fixed and 𝑛→ ∞.

Can one do better?

If 𝐹 is non-bipartite, then the complete bipartite graph 𝐾𝑛/2,𝑛/2 has 𝐹-density zero.
(The problem of minimizing 𝐹-density is still interesting and not easy; it has been
solved for cliques.)

Sidorenko’s conjecture (1993) (also proposed by Erdős and Simonovits (1983)) says
for any fixed bipartite 𝐹, the random graph asymptotically minimizes 𝐹-density. This
is an important and well-known conjecture in extremal graph theory.

Conjecture 10.3.2 (Sidorenko)
For every bipartite graph 𝐹, and any graph 𝐺,

𝑡 (𝐹, 𝐺) ≥ 𝑡 (𝐾2, 𝐺)𝑒(𝐹) .

The conjecture is known to hold for a large family of graphs 𝐹.

The entropy approach to Sidorenko’s conjecture was first introduced by Li and Szegedy
(2011) and later further developed in subsequent works. Here we illustrate the entropy
approach to Sidorenko’s conjecture with several examples.

We will construct a probability distribution 𝜇 on Hom(𝐹, 𝐺), the set of all graph
homomorphisms 𝐹 → 𝐺. Unlike earlier applications of entropy, here we are trying to
prove a lower bound on hom(𝐹, 𝐺) instead of an upper bound. So instead of taking
𝜇 to be a uniform distribution (which automatically has entropy log2 hom(𝐹, 𝐺)), we
actually take 𝜇 to be carefully constructed distribution, and apply the upper bound

𝐻 (𝜇) ≤ log2 |support 𝜇 | = log2 hom(𝐹, 𝐺).

We are trying to show that

hom(𝐹, 𝐺)
𝑣(𝐺)𝑣(𝐹)

≥
(
2𝑒(𝐺)
𝑣(𝐺)2

)𝑒(𝐹)
.

So we would like to find a probability distribution 𝜇 on Hom(𝐹, 𝐺) satisfying

𝐻 (𝜇) ≥ 𝑒(𝐹) log2(2𝑒(𝐺)) − (2𝑒(𝐹) − 𝑣(𝐹)) log2 𝑣(𝐺). (10.1)

Theorem 10.3.3 (Blakey and Roy 1965)
Sidorenko’s conjecture holds if 𝐹 is a three-edge path.

Proof. We choose randomly a walk 𝑋𝑌𝑍𝑊 in 𝐺 as follows:
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• 𝑋𝑌 is a uniform random edge of 𝐺 (by this we mean first choosing an edge of
𝐺 uniformly at random, and then let 𝑋 be a uniformly chosen endpoint of this
edge, and then 𝑌 the other endpoint);

• 𝑍 is a uniform random neighbor of 𝑌 ;

• 𝑊 is a uniform random neighbor of 𝑍 .

Key observation: 𝑌𝑍 is distributed as a uniform random edge of 𝐺, and likewise with
𝑍𝑊

Indeed, conditioned on the choice of 𝑌 , the vertices 𝑋 and 𝑍 are both independent and
uniform neighbors of 𝑌 , so 𝑋𝑌 and 𝑌𝑍 are uniformly distributed.

Also, the conditional independence observation implies that

𝐻 (𝑍 |𝑋,𝑌 ) = 𝐻 (𝑍 |𝑌 ) and 𝐻 (𝑊 |𝑋,𝑌, 𝑍) = 𝐻 (𝑊 |𝑍)

and futhermore both quantities are equal to 𝐻 (𝑌 |𝑋) since 𝑋𝑌,𝑌𝑍, 𝑍𝑊 are each dis-
tributed as a uniform random edge.

Thus

𝐻 (𝑋,𝑌, 𝑍,𝑊) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋) + 𝐻 (𝑍 |𝑋,𝑌 ) + 𝐻 (𝑊 |𝑋,𝑌, 𝑍) [chain rule]

= 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋) + 𝐻 (𝑍 |𝑌 ) + 𝐻 (𝑊 |𝑍) [cond indep]

= 𝐻 (𝑋) + 3𝐻 (𝑌 |𝑋)
= 3𝐻 (𝑋,𝑌 ) − 2𝐻 (𝑋) [chain rule]

≥ 3 log2(2𝑒(𝐺)) − 2 log2 𝑣(𝐺)

In the final step we used 𝐻 (𝑋,𝑌 ) = log2(2𝑒(𝐺)) since 𝑋𝑌 is uniformly distributed
among edges, and 𝐻 (𝑋) ≤ log2 |support(𝑋) | = log2 𝑣(𝐺). This proves (10.1) and
hence the theorem for a path of 4 vertices. (As long as the final expression has the
“right form” and none of the steps are lossy, the proof should work out.) □

Remark 10.3.4. See this MathOverflow discussion for the history as well as alternate
proofs.

The above proof easily generalizes to all trees. We omit the details.

Theorem 10.3.5
Sidorenko’s conjecture holds if 𝐹 is a tree.
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Theorem 10.3.6
Sidorenko’s conjecture holds for all complete bipartite graphs.

Proof. Following the same framework as earlier, let us demonstrate the result for
𝐹 = 𝐾2,2. The same proof extends to all 𝐾𝑠,𝑡 .

𝑥1

𝑥2

𝑦1

𝑦2

We will pick a random tuple (𝑋1, 𝑋2, 𝑌1, 𝑌2) ∈ 𝑉 (𝐺)4 with 𝑋𝑖𝑌 𝑗 ∈ 𝐸 (𝐺) for all 𝑖, 𝑗 as
follows.

• 𝑋1𝑌1 is a uniform random edge;

• 𝑌2 is a uniform random neighbor of 𝑋1;

• 𝑋2 is a conditionally independent copy of 𝑋1 given (𝑌1, 𝑌2).

The last point deserves more attention. Note that we are not simply uniformly randomly
choosing a common neighbor of 𝑌1 and 𝑌2 as one might naively attempt. Instead, one
can think of the first two steps as generating a distribution for (𝑋1, 𝑌1, 𝑌2)—according to
this distribution, we first generate (𝑌1, 𝑌2) according to its marginal, and then produce
two conditionally independent copies of 𝑋1 (the second copy is 𝑋2).

As in the previous proof (applied to a 2-edge path), we see that

𝐻 (𝑋1, 𝑌1, 𝑌2) = 2𝐻 (𝑋1, 𝑌1) − 𝐻 (𝑋1) ≥ 2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺).

So we have

𝐻 (𝑋1, 𝑋2, 𝑌1, 𝑌2)
= 𝐻 (𝑌1, 𝑌2) + 𝐻 (𝑋1, 𝑋2 |𝑌1, 𝑌2) [chain rule]

= 𝐻 (𝑌1, 𝑌2) + 2𝐻 (𝑋1 |𝑌1, 𝑌2) [conditional independence]

= 2𝐻 (𝑋1, 𝑌1, 𝑌2) − 𝐻 (𝑌1, 𝑌2) [chain rule]

≥ 2(2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺)) − 2 log2 𝑣(𝐺). [prev. ineq. and uniform bound]

= 4 log(2𝑒(𝐺)) − 4 log2 𝑣(𝐺).

So we have verified (10.1) for 𝐾2,2. □

188



MIT OCW: Probabilistic Methods in Combinatorics — Yufei Zhao

10.3 Sidorenko’s inequality

Theorem 10.3.7 (Conlon, Fox, Sudakov 2010)
Sidorenko’s conjecture holds for a bipartite graph that has a vertex adjacent to all
vertices in the other part.

Proof. Let us illustrate the proof for the following graph. The proof extends to the
general case.

𝑥0

𝑦1

𝑦2

𝑦3

𝑥1

𝑥2

Let us choose a random tuple (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3) ∈ 𝑉 (𝐺)6 as follows:

• 𝑋0𝑌1 is a uniform random edge;

• 𝑌2 and 𝑌3 are independent uniform random neighbors of 𝑋0;

• 𝑋1 is a conditionally independent copy of 𝑋0 given (𝑌1, 𝑌2);

• 𝑋2 is a conditionally independent copy of 𝑋0 given (𝑌2, 𝑌3).

(as well as other symmetric versions.) Some important properties of this distribution:

• 𝑋0, 𝑋1, 𝑋2 are conditionally independent given (𝑌1, 𝑌2, 𝑌3);

• 𝑋1 and (𝑋0, 𝑌3, 𝑋2) are conditionally independent given (𝑌1, 𝑌2);

• The distribution of (𝑋0, 𝑌1, 𝑌2) is identical to the distribution of (𝑋1, 𝑌1, 𝑌2).

We have

𝐻 (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3)
= 𝐻 (𝑋0, 𝑋1, 𝑋2 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3) [chain rule]

= 𝐻 (𝑋0 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋2 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3) [cond indep]

= 𝐻 (𝑋0 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1 |𝑌1, 𝑌2) + 𝐻 (𝑋2 |𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3) [cond indep]

= 𝐻 (𝑋0, 𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1, 𝑌1, 𝑌2) + 𝐻 (𝑋2, 𝑌2, 𝑌3) − 𝐻 (𝑌1, 𝑌2) − 𝐻 (𝑌2, 𝑌3). [chain rule]

The proof of Theorem 10.3.3 actually lower bounds the first three terms:

𝐻 (𝑋0, 𝑌1, 𝑌2, 𝑌3) ≥ 3 log2(2𝑒(𝐺)) − 2 log2 𝑣(𝐺)
𝐻 (𝑋1, 𝑌1, 𝑌2) ≥ 2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺)
𝐻 (𝑋2, 𝑌2, 𝑌3) ≥ 2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺).
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We can apply the uniform support bound on the remaining terms.

𝐻 (𝑌1, 𝑌2) = 𝐻 (𝑌2, 𝑌3) ≤ 2 log2 𝑣(𝐺).

Putting everything together, we have

𝐻 (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3) ≥ 7 log2(2𝑒(𝐺)) − 8 log2 𝑣(𝐺),

thereby verifying (10.1). □

To check that you understand the above proof, where did we use the assumption that
𝐹 has a vertex complete to the other part?

Many other graphs can be proved by extending this method.

Remark 10.3.8 (Möbius graph). An important open case (and the smallest in some
sense) of Sidorenko conjecture is when 𝐹 is the following graph, known as the Möbius
graph. It is 𝐾5,5 with a 10-cycle removed. The name comes from it being the face-
vertex incidence graph of the simplicial complex structure of the Möbius strip, built
by gluing a strip of five triangles.

Möbius graph = 𝐾5,5 \ 𝐶10 =

10.4 Shearer’s lemma
Shearer’s entropy lemma extends the subadditivity property of entropy. Before stating
it in full generality, let us first see the simplest instance of Shearer’s lemma.

Theorem 10.4.1 (Shearer’s lemma, special case)

2𝐻 (𝑋,𝑌, 𝑍) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑋, 𝑍) + 𝐻 (𝑌, 𝑍)

Proof. Using the chain rule and conditioning dropping, we have

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋)
𝐻 (𝑋, 𝑍) = 𝐻 (𝑋) + 𝐻 (𝑍 |𝑋) ≥ 𝐻 (𝑋) + 𝐻 (𝑍 |𝑋, 𝑍)
𝐻 (𝑌, 𝑍) = 𝐻 (𝑌 ) + 𝐻 (𝑍 |𝑌 ) ≥ 𝐻 (𝑌 |𝑋) + 𝐻 (𝑍 |𝑋,𝑌 )

Applying conditioning dropping, we see that their sum is at at least

2𝐻 (𝑋) + 2𝐻 (𝑌 |𝑋) + 2𝐻 (𝑍 |𝑋,𝑌 ) = 2𝐻 (𝑋,𝑌, 𝑍). □
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Question 10.4.2
What is the maximum volume of a body in R3 that has area at most 1 when projected
to each of the three coordinate planes?

The cube [0, 1]3 satisfies the above property and has area 1. It turns out that this is the
maximum.

To prove this claim, first let us use Shearer’s inequality to prove a discrete version.

Theorem 10.4.3
Let 𝑆 ⊆ R3 be a finite set, and 𝜋𝑥𝑦 (𝑆) be its projection on the 𝑥𝑦-plane, etc. Then

|𝑆 |2 ≤
��𝜋𝑥𝑦 (𝑆)�� |𝜋𝑥𝑧 (𝑆) | ��𝜋𝑦𝑧 (𝑆)��

Proof. Let (𝑋,𝑌, 𝑍) be a uniform random point of 𝑆. Then

2 log2 |𝑆 | = 2𝐻 (𝑋,𝑌, 𝑍) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑋, 𝑍) + 𝐻 (𝑌, 𝑍)
≤ log2 𝜋𝑥𝑦 (𝑆) + log2 𝜋𝑥𝑧 (𝑆) + log2 𝜋𝑦𝑧 (𝑆). □

By approximating a body using cubes, we can deduce the following corollary.

Corollary 10.4.4
Let 𝑆 be a body in R3. Then

vol(𝑆)2 ≤ area(𝜋𝑥𝑦 (𝑆)) area(𝜋𝑥𝑧 (𝑆)) area(𝜋𝑦𝑧 (𝑆)).

Let us now state the general form of Shearer’s lemma. (Chung, Graham, Frankl, and
Shearer 1986)

Theorem 10.4.5 (Shearer’s lemma)
Let 𝐴1, . . . , 𝐴𝑠 ⊆ [𝑛] where each 𝑖 ∈ [𝑛] appears in at least 𝑘 sets 𝐴 𝑗 ’s. Writing
𝑋𝐴 := (𝑋𝑖)𝑖∈𝐴,

𝑘𝐻 (𝑋1, . . . , 𝑋𝑛) ≤
∑︁
𝑗∈[𝑠]

𝐻 (𝑋𝐴 𝑗
).

The proof of the general form of Shearer’s lemma is a straightforward adaptation of
the proof of the special case earlier.

Like earlier, we can deduce an inequality about sizes of projections. (Loomis and
Whitney 1949)
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Corollary 10.4.6 (Loomis–Whitney inequality)
Writing 𝜋𝑖 for the projection from R𝑛 onto the hyperplane 𝑥𝑖 = 0, we have for every
𝑆 ⊆ R𝑛,

|𝑆 |𝑛−1 ≤
𝑛∏
𝑖=1

|𝜋𝑖 (𝑆) |

Corollary 10.4.7
Let 𝐴1, . . . , 𝐴𝑠 ⊆ Ω where each 𝑖 ∈ Ω appears in at least 𝑘 sets 𝐴 𝑗 . Then for every
family F of subsets of Ω,

|F |𝑘 ≤
∏
𝑗∈[𝑠]

��F |𝐴 𝑗

��
where F |𝐴 := {𝐹 ∩ 𝐴 : 𝐹 ∈ F }.

Proof. Each subset ofΩ corresponds to a vector (𝑋1, . . . , 𝑋𝑛) ∈ {0, 1}𝑛. Let (𝑋1, . . . , 𝑋𝑛)
be a random vector corresponding to a uniform element of F . Then

𝑘 log2 |F | = 𝑘𝐻 (𝑋1, . . . , 𝑋𝑛) ≤
∑︁
𝑗∈[𝑠]

𝐻 (𝑋𝐴 𝑗
) = log2

��F |𝐴 𝑗

�� . □

Triangle-intersecting families
We say that a set G of labeled graphs on the same vertex set is triangle-intersecting if
𝐺 ∩ 𝐺′ contains a triangle for every 𝐺,𝐺′ ∈ G.

Question 10.4.8
What is the largest triangle-intersecting family of graphs on 𝑛 labeled vertices?

The set of all graphs that contain a fixed triangle is triangle-intersecting, and they form
a 1/8 fraction of all graphs.

An easy upper bound: the edges form an intersecting family, so a triangle-intersecting
family must be at most 1/2 fraction of all graphs.

The next theorem improves this upper bound to < 1/4. It is also in this paper that
Shearer’s lemma was introduced.

Theorem 10.4.9 (Chung, Graham, Frankl, and Shearer 1986)
Every triangle-intersecting family of graphs on 𝑛 labeled vertices has size < 2(𝑛2)−2.
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Proof. Let G be a triangle-intersecting family of graphs on vertex set [𝑛] (viewed as
a collection of subsets of edges of 𝐾𝑛)

For 𝑆 ⊆ [𝑛] with |𝑆 | = ⌊𝑛/2⌋, let 𝐴𝑆 =
(𝑆
2
)
∪

([𝑛]\𝑆
2

)
(i.e., 𝐴𝑆 is the union of the clique

on 𝑆 and the clique on the complement of 𝑆). Let

𝑟 = |𝐴𝑆 | =
(
⌊𝑛/2⌋

2

)
+

(
⌈𝑛/2⌉

2

)
≤ 1

2

(
𝑛

2

)
.

For every 𝑆, every triangle has an edge in 𝐴𝑆, and thus G restricted to 𝐴𝑆 must be an
intersecting family. Hence ��G|𝐴𝑆

�� ≤ 2|𝐴𝑆 |−1 = 2𝑟−1.

Each edge of 𝐾𝑛 appears in at least

𝑘 =
𝑟(𝑛
2
) ( 𝑛

⌊𝑛/2⌋

)
different 𝐴𝑆 with |𝑆 | = ⌊𝑛/2⌋ (by symmetry and averaging). Applying Corol-
lary 10.4.7, we find that

|G|𝑘 ≤
(
2𝑟−1

) ( 𝑛
⌊𝑛/2⌋)

.

Therefore
|G| ≤ 2(

𝑛
2)− (𝑛2)

𝑟 < 2(
𝑛
2)−2. □

Remark 10.4.10. A tight upper bound of 2(𝑛2)−3 (matching the construction of taking
all graphs containing a fixed triangle) was conjectured by Simonovits and Sós (1976)
and proved by Ellis, Filmus, and Friedgut (2012) using Fourier analytic methods.
Berger and Zhao (2023) gave a tight solution for 𝐾4-intersecting families. The general
conjecture for 𝐾𝑟-intersecting families is open.

The number of independent sets in a regular bipartite graph

Question 10.4.11
Fix 𝑑. Which 𝑑-regular graph on a given number of vertices has the most number of
independent sets? Alternatively, which graph 𝐺 maximizes 𝑖(𝐺)1/𝑣(𝐺)?

(Note that the number of independent sets is multiplicative: 𝑖(𝐺1⊔𝐺2) = 𝑖(𝐺1)𝑖(𝐺2).)

Alon and Kahn conjectured that for graphs on 𝑛 vertices, when 𝑛 is a multiple of 2𝑑,
a disjoint union of 𝐾𝑑,𝑑’s maximizes the number of independent sets.
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Alon (1991) proved an approximate version of this conjecture. Kahn (2001) proved it
assuming the graph is bipartite. Zhao (2010) proved it in general.

Theorem 10.4.12 (Kahn, Zhao)
Let 𝐺 be an 𝑛-vertex 𝑑-regular graph. Then

𝑖(𝐺) ≤ 𝑖(𝐾𝑑,𝑑)𝑛/(2𝑑) = (2𝑑+1 − 1)𝑛/(2𝑑)

where 𝑖(𝐺) is the number of independent sets of 𝐺.

Proof assuming 𝐺 is bipartite. (Kahn) Let us first illustrate the proof for

𝐺 =

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

Among all independent sets of𝐺, choose one uniformly at random, and let (𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3) ∈
{0, 1}6 be its indicator vector. Then

2 log2 𝑖(𝐺) = 2𝐻 (𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3)
= 2𝐻 (𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌1, 𝑌2, 𝑌3 |𝑋1, 𝑋2, 𝑋3) [chain rule]

≤ 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑋1, 𝑋3) + 𝐻 (𝑋2, 𝑋3)
+ 2𝐻 (𝑌1 |𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌2 |𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌3 |𝑋1, 𝑋2, 𝑋3) [Shearer]

= 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑋1, 𝑋3) + 𝐻 (𝑋2, 𝑋3)
+ 2𝐻 (𝑌1 |𝑋1, 𝑋2) + 2𝐻 (𝑌2 |𝑋1, 𝑋3) + 2𝐻 (𝑌3 |𝑋2, 𝑋3) [cond indep]

Here we are using that (a) 𝑌1, 𝑌2, 𝑌3 are conditionally independent given (𝑋1, 𝑋2, 𝑋3)
and (b) 𝑌1 and (𝑋3, 𝑌2, 𝑌3) are conditionally independent given (𝑋1, 𝑋2). A more
general statement is that if 𝑆 ⊆ 𝑉 (𝐺), then the restrictions to the different connected
components of 𝐺 − 𝑆 are conditionally independent given 𝑋𝑆.

It remains to prove that

𝐻 (𝑋1, 𝑋2) + 2𝐻 (𝑌1 |𝑋1, 𝑋2) ≤ log2 𝑖(𝐾2,2)

and two other analogous inequalities. Let 𝑌 ′
1 be conditionally independent copy of 𝑌1

given (𝑋1, 𝑋2). Then (𝑋1, 𝑋2, 𝑌1, 𝑌
′
1) is the indictor vector of an independent set of

𝐾2,2 (though not necessarily chosen uniformly).

𝑥1

𝑥2

𝑦1

𝑦′1
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Thus we have

𝐻 (𝑋1, 𝑋2) + 2𝐻 (𝑌1 |𝑋1, 𝑋2) = 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑌1 |𝑋1, 𝑋2) + 𝐻 (𝑌 ′
1 |𝑋1, 𝑋2)

= 𝐻 (𝑋1, 𝑋2, 𝑌1, 𝑌
′
1) [chain rule]

≤ log2 𝑖(𝐺) [uniform bound]

This concludes the proof for 𝐺 = 𝐾2,2, which works for all bipartite 𝐺. Here are the
details.

Let𝑉 = 𝐴∪𝐵 be the vertex bipartition of𝐺. Let 𝑋 = (𝑋𝑣)𝑣∈𝑉 be the indicator function
of an independent set chosen uniformly at random. Write 𝑋𝑆 := (𝑋𝑣)𝑣∈𝑆. We have

𝑑 log2 𝑖(𝐺) = 𝑑𝐻 (𝑋) = 𝑑𝐻 (𝑋𝐴) + 𝑑𝐻 (𝑋𝐵 |𝑋𝐴) [chain rule]

≤
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑁 (𝑏)) + 𝑑
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑏 |𝑋𝐴) [Shearer]

≤
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑁 (𝑏)) + 𝑑
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑏 |𝑋𝑁 (𝑏)) [drop conditioning]

For each 𝑏 ∈ 𝐵, we have

𝐻 (𝑋𝑁 (𝑏)) + 𝑑𝐻 (𝑋𝑏 |𝑋𝑁 (𝑏)) = 𝐻 (𝑋𝑁 (𝑏)) + 𝐻 (𝑋 (1)
𝑏
, . . . , 𝑋

(𝑑)
𝑏

|𝑋𝑁 (𝑏))
= 𝐻 (𝑋 (1)

𝑏
, . . . , 𝑋

(𝑑)
𝑏
, 𝑋𝑁 (𝑏))

≤ log2 𝑖(𝐾𝑑,𝑑)

where 𝑋 (1)
𝑏
, . . . , 𝑋

(𝑑)
𝑏

are conditionally independent copies of 𝑋𝑏 given 𝑋𝑁 (𝑏) . Sum-
ming over all 𝑏 yields the result. □

Now we give the argument from Zhao (2010) that removes the bipartite hypothesis.
The following combinatorial argument reduces the problem for non-bipartite 𝐺 to that
of bipartite 𝐺.

Starting from a graph 𝐺, we construct its bipartite double cover 𝐺 × 𝐾2 (see Fig-
ure 10.1), which has vertex set 𝑉 (𝐺) × {0, 1}. The vertices of 𝐺 × 𝐾2 are labeled 𝑣𝑖
for 𝑣 ∈ 𝑉 (𝐺) and 𝑖 ∈ {0, 1}. Its edges are 𝑢0𝑣1 for all 𝑢𝑣 ∈ 𝐸 (𝐺). Note that 𝐺 × 𝐾2
is always a bipartite graph.

Lemma 10.4.13
Let 𝐺 be any graph (not necessarily regular). Then

𝑖(𝐺)2 ≤ 𝑖(𝐺 × 𝐾2).

Once we have the lemma, Theorem 10.4.12 then reduces to the bipartite case, which
we already proved. Indeed, for a 𝑑-regular 𝐺, since 𝐺 × 𝐾2 is bipartite, the bipartite

195

https://mathscinet.ams.org/mathscinet-getitem?mr=2593625


MIT OCW: Probabilistic Methods in Combinatorics — Yufei Zhao

10 Entropy

2𝐺 𝐺 × 𝐾2 𝐺 × 𝐾2

Figure 10.1: The bipartite swapping trick in the proof of Lemma 10.4.13: swap-
ping the circled pairs of vertices (denoted 𝐴 in the proof) fixes the
bad edges (red and bolded), transforming an independent set of 2𝐺
into an independent set of 𝐺 × 𝐾2.

case of the theorem gives

𝑖(𝐺)2 ≤ 𝑖(𝐺 × 𝐾2) ≤ 𝑖(𝐾𝑑,𝑑)𝑛/𝑑 ,

Proof of Lemma 10.4.13. Let 2𝐺 denote a disjoint union of two copies of 𝐺. Label
its vertices by 𝑣𝑖 with 𝑣 ∈ 𝑉 and 𝑖 ∈ {0, 1} so that its edges are 𝑢𝑖𝑣𝑖 with 𝑢𝑣 ∈ 𝐸 (𝐺) and
𝑖 ∈ {0, 1}. We will give an injection 𝜙 : 𝐼 (2𝐺) → 𝐼 (𝐺 × 𝐾2). Recall that 𝐼 (𝐺) is the
set of independent sets of 𝐺. The injection would imply 𝑖(𝐺)2 = 𝑖(2𝐺) ≤ 𝑖(𝐺 × 𝐾2)
as desired.

Fix an arbitrary order on all subsets of 𝑉 (𝐺). Let 𝑆 be an independent set of 2𝐺. Let

𝐸bad(𝑆) := {𝑢𝑣 ∈ 𝐸 (𝐺) : 𝑢0, 𝑣1 ∈ 𝑆}.

Note that 𝐸bad(𝑆) is a bipartite subgraph of 𝐺, since each edge of 𝐸bad has exactly one
endpoint in {𝑣 ∈ 𝑉 (𝐺) : 𝑣0 ∈ 𝑆} but not both (or else 𝑆 would not be independent).
Let 𝐴 denote the first subset (in the previously fixed ordering) of 𝑉 (𝐺) such that all
edges in 𝐸bad(𝑆) have one vertex in 𝐴 and the other outside 𝐴. Define 𝜙(𝑆) to be the
subset of 𝑉 (𝐺) × {0, 1} obtained by “swapping” the pairs in 𝐴, i.e., for all 𝑣 ∈ 𝐴,
𝑣𝑖 ∈ 𝜙(𝑆) if and only if 𝑣1−𝑖 ∈ 𝑆 for each 𝑖 ∈ {0, 1}, and for all 𝑣 ∉ 𝐴, 𝑣𝑖 ∈ 𝜙(𝑆) if and
only if 𝑣𝑖 ∈ 𝑆 for each 𝑖 ∈ {0, 1}. It is not hard to verify that 𝜙(𝑆) is an independent
set in 𝐺 × 𝐾2. The swapping procedure fixes the “bad” edges.

It remains to verify that 𝜙 is an injection. For every 𝑆 ∈ 𝐼 (2𝐺), once we know
𝑇 = 𝜙(𝑆), we can recover 𝑆 by first setting

𝐸′
bad(𝑇) = {𝑢𝑣 ∈ 𝐸 (𝐺) : 𝑢𝑖, 𝑣𝑖 ∈ 𝑇 for some 𝑖 ∈ {0, 1}},

so that 𝐸bad(𝑆) = 𝐸′
bad(𝑇), and then finding 𝐴 as earlier and swapping the pairs of 𝐴

back. (Remark: it follows that 𝑇 ∈ 𝐼 (𝐺 × 𝐾2) lies in the image of 𝜙 if and only if
𝐸′

bad(𝑇) is bipartite.) □
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The entropy proof of the bipartite case of Theorem 10.4.12 extends to graph homo-
morphisms, yielding the following result.

Theorem 10.4.14 (Galvin and Tetali 2004)
Let 𝐺 be an 𝑛-vertex 𝑑-regular bipartite graph. Let 𝐻 be any graph allowing loops.
Then

hom(𝐺, 𝐻) ≤ hom(𝐾𝑑,𝑑 , 𝐻)𝑛/(2𝑑)

Some important special cases:

• hom(𝐺, ) = 𝑖(𝐺), the number of independent sets of 𝐺;

• hom(𝐺, 𝐾𝑞) = the number of proper 𝑞-colorings of 𝐺.

The bipartite hypothesis in Theorem 10.4.14 cannot be always be removed. For
example, if 𝐻 = , then log2 hom(𝐺, 𝐻) is the number of connected components
of 𝐺, so that the maximizers of log2 hom(𝐺, 𝐻)/𝑣(𝐺) are disjoint unions of 𝐾𝑑+1’s.

For 𝐻 = 𝐾𝑞, corresponding to the proper 𝑞-colorings, the bipartite hypothesis was
recently removed.

Theorem 10.4.15 (Sah, Sawhney, Stoner, and Zhao 2020)
Let 𝐺 be an 𝑛-vertex 𝑑-regular graph. Then

𝑐𝑞 (𝐺) ≤ 𝑐𝑞 (𝐾𝑑,𝑑)𝑛/(2𝑑)

where 𝑐𝑞 (𝐺) is the number of 𝑞-colorings of 𝐺.

Furthermore, it was also shown in the same paper that in Theorem 10.4.14, the bipartite
hypothesis on 𝐺 can be weakened to triangle-free. Furthermore triangle-free is the
weakest possible hypothesis on 𝐺 so that the claim is true for all 𝐻.

For more discussion and open problems on this topic, see the survey by Zhao (2017).

Exercises
The problems in this section should be solved using entropy arguments or results
derived from entropy arguments.

1. Submodularity. Prove that 𝐻 (𝑋,𝑌, 𝑍) + 𝐻 (𝑋) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑋, 𝑍).

2. Let F be a collection of subsets of [𝑛]. Let 𝑝𝑖 denote the fraction of F that
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contains 𝑖. Prove that

|F | ≤
𝑛∏
𝑖=1

𝑝
−𝑝𝑖
𝑖

(1 − 𝑝𝑖)−(1−𝑝𝑖) .

3. ★ Uniquely decodable codes. Let [𝑟]∗ denote the set of all finite strings of
elements in [𝑟]. Let 𝐴 be a finite subset of [𝑟]∗ and suppose no two distinct
concatenations of sequences in 𝐴 can produce the same string. Let |𝑎 | denote
the length of 𝑎 ∈ 𝐴. Prove that ∑︁

𝑎∈𝐴
𝑟−|𝑎 | ≤ 1.

4. Sudoku. A 𝑛2 × 𝑛2 Sudoku square (the usual Sudoku corresponds to 𝑛 = 3) is
an 𝑛2 × 𝑛2 array with entries from [𝑛2] so that each row, each column, and, after
partitioning the square into 𝑛 × 𝑛 blocks, each of these 𝑛2 blocks consist of a
permutation of [𝑛2]. Prove that the number of 𝑛2 × 𝑛2 Sudoku squares is at most(

𝑛2

𝑒3 + 𝑜(1)

)𝑛4

.

5. Prove Sidorenko’s conjecture for the following graph.

6. ★ Triangles versus vees in a directed graph. Let𝑉 be a finite set, 𝐸 ⊆ 𝑉 ×𝑉 , and

△ =
��{(𝑥, 𝑦, 𝑧) ∈ 𝑉3 : (𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑥) ∈ 𝐸

}��
(i.e., cyclic triangles; note the direction of edges) and

∧ =
��{(𝑥, 𝑦, 𝑧) ∈ 𝑉3 : (𝑥, 𝑦), (𝑥, 𝑧) ∈ 𝐸

}�� .
Prove that △ ≤ ∧.

7. ★ Box theorem. Prove that for every compact set 𝐴 ⊆ R𝑑 , there exists an
axis-aligned box 𝐵 ⊆ R𝑑 with

vol 𝐴 = vol 𝐵 and vol 𝜋𝐼 (𝐴) ≥ vol 𝜋𝐼 (𝐵) for all 𝐼 ⊆ [𝑛] .
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10.4 Shearer’s lemma

Here 𝜋𝐼 denotes the orthogonal projection onto the 𝐼-coordinate subspace.

(For the purpose of the homework, you only need to establish the case when 𝐴 is a union of grid
cubes. It is optional to give the limiting argument for compact 𝐴.)

8. Let G be a family of graphs on vertices labeled by [2𝑛] such that the intersection
of every pair of graphs inG contains a perfect matching. Prove that |G| ≤ 2(2𝑛

2 )−𝑛.

9. Loomis–Whitney for sumsets. Let 𝐴, 𝐵, 𝐶 be finite subsets of some abelian
group. Writing 𝐴 + 𝐵 := {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, etc., prove that

|𝐴 + 𝐵 + 𝐶 |2 ≤ |𝐴 + 𝐵 | |𝐴 + 𝐶 | |𝐵 + 𝐶 | .

10. ★ Shearer for sums. Let 𝑋,𝑌, 𝑍 be independent random integers. Prove that

2𝐻 (𝑋 + 𝑌 + 𝑍) ≤ 𝐻 (𝑋 + 𝑌 ) + 𝐻 (𝑋 + 𝑍) + 𝐻 (𝑌 + 𝑍).
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