PROBABILISTIC METHODS IN COMBINATORICS MIT 18.226 (FALL 2022) - PROF. YUFEI ZHAO PROBLEM SET

A. Introduction and linearity of expectations

A1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
(a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}}<1$ has $n=\left(\frac{1}{e \sqrt{2}}+o(1)\right) k 2^{k / 2}$.
(b) For each k, the maximum value of $n-\binom{n}{k} 2^{1-\binom{k}{2}}$ as n ranges over positive integers is $\left(\frac{1}{e}+o(1)\right) k 2^{k / 2}$.
(c) For each k, the largest n satisfying $\left.e\binom{k}{2}\binom{n}{k-2}+1\right) 2^{1-\binom{k}{2}}<1$ satisfies $n=\left(\frac{\sqrt{2}}{e}+o(1)\right) k 2^{k / 2}$.

A2. Prove that, if there is a real $p \in[0,1]$ such that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1
$$

then the Ramsey number $R(k, t)$ satisfies $R(k, t)>n$. Using this show that

$$
R(4, t) \geq c\left(\frac{t}{\log t}\right)^{3 / 2}
$$

for some constant $c>0$.

A3. Let G be a graph with n vertices and m edges. Prove that K_{n} can be written as a union of $O\left(n^{2}(\log n) / m\right)$ isomorphic copies of G (not necessarily edge-disjoint).
A4. Prove that there is an absolute constant $C>0$ so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $C \sqrt{n}$. (A subsequence does not need to be selected from consecutive terms. For example, $(1,2,3)$ is an increasing subsequence of $(1,5,2,4,3)$.)
A5. Generalization of Sperner's theorem. Let \mathcal{F} be a collection of subset of $[n]$ that does not contain $k+1$ elements forming a chain: $A_{1} \subsetneq \cdots \subsetneq A_{k+1}$. Prove that \mathcal{F} is no larger than taking the union of the k levels of the Boolean lattice closest to the middle layer.
A6. Let G be a graph on $n \geq 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least $8 n-36$ edges.

Hint in white:
A7. Let $k \geq 4$ and H a k-uniform hypergraph with at most $4^{k-1} / 3^{k}$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
A8. Given a set \mathcal{F} of subsets of $[n]$ and $A \subseteq[n]$, write $\left.\mathcal{F}\right|_{A}:=\{S \cap A: S \in \mathcal{F}\}$ (its projection onto $A)$. Prove that for every n and k, there exists a set \mathcal{F} of subsets of $[n]$ with $|\mathcal{F}|=O\left(k 2^{k} \log n\right)$ such that for every k-element subset A of $[n],\left.\mathcal{F}\right|_{A}$ contains all 2^{k} subsets of A.
A9. Let A_{1}, \ldots, A_{m} be r-element sets and B_{1}, \ldots, B_{m} be s-element sets. Suppose $A_{i} \cap B_{i}=\emptyset$ for each i, and for each $i \neq j$, either $A_{i} \cap B_{j} \neq \emptyset$ or $A_{j} \cap B_{i} \neq \emptyset$. Prove that $m \leq(r+s)^{r+s} /\left(r^{r} s^{s}\right)$.
ps1* A10. Show that in every non-2-colorable n-uniform hypergraph, one can find at least $\frac{n}{2}\binom{2 n-1}{n}$ unordered pairs of edges with each pair intersecting in exactly one vertex.
A11. Let A be a measurable subset of the unit sphere in \mathbb{R}^{3} (centered at the origin) containing no pair of orthogonal points.

A12. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
A13. Let $\boldsymbol{r}=\left(r_{1}, \ldots, r_{k}\right)$ be a vector of nonzero integers whose sum is nonzero. Prove that there exists a real $c>0$ (depending on \boldsymbol{r} only) such that the following holds: for every finite set A of nonzero reals, there exists a subset $B \subseteq A$ with $|B| \geq c|A|$ such that there do not exist $b_{1}, \ldots, b_{k} \in B$ with $r_{1} b_{1}+\cdots+r_{k} b_{k}=0$.
ps1 A14. Prove that every set A of n nonzero integers contains two disjoint subsets B_{1} and B_{2}, such that both B_{1} and B_{2} are sum-free, and $\left|B_{1}\right|+\left|B_{2}\right|>2 n / 3$.
A15. Let G be an n-vertex graph with $p n^{2}$ edges, with $n \geq 10$ and $p \geq 10 / n$. Prove that G contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each with at least $c p^{2} n^{2}$ edges, where $c>0$ is a constant.
ps1* A16. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of $r k$ points evenly spaced on a circle. If we partition $S=S_{1} \cup \cdots \cup S_{r}$ so that $\left|S_{i}\right|=k$ for each i, then, provided $k \geq K$, there exist r congruent triangles where the vertices of the i-th triangle lie in S_{i}, for each $1 \leq i \leq r$.
ps1* A17. Prove that $[n]^{d}$ cannot be partitioned into fewer than 2^{d} sets each of the form $A_{1} \times \cdots \times A_{d}$ where $A_{i} \subsetneq[n]$.

B. Alteration method

B1. Using the alteration method, prove the Ramsey number bound

$$
R(4, k) \geq c(k / \log k)^{2}
$$

for some constant $c>0$.
B2. Prove that every 3 -uniform hypergraph with n vertices and $m \geq n$ edges contains an independent set (i.e., a set of vertices containing no edges) of size at least $c n^{3 / 2} / \sqrt{m}$, where $c>0$ is a constant.
B3. Prove that every k-uniform hypergraph with n vertices and m edges has a transversal (i.e., a set of vertices intersecting every edge) of size at most $n(\log k) / k+m / k$.
B4. Zarankiewicz problem. Prove that for every positive integers $n \geq k \geq 2$, there exists an $n \times n$ matrix with $\{0,1\}$ entries, with at least $\frac{1}{2} n^{2-2 /(k+1)} 1$'s, such that there is no $k \times k$ submatrix consisting of all 1's.
B5. Fix k. Prove that there exists a constant $c_{k}>1$ so that for every sufficiently large $n>$ $n_{0}(k)$, there exists a collection \mathcal{F} of at least c_{k}^{n} subsets of $[n]$ such that for every k distinct $F_{1}, \ldots, F_{k} \in \mathcal{F}$, all 2^{k} intersections $\bigcap_{i=1}^{k} G_{i}$ are nonempty, where each G_{i} is either F_{i} or $[n] \backslash F_{i}$.

B6. Acute sets in \mathbb{R}^{n}. Prove that, for some constant $c>0$, for every n, there exists a family of at least $c(2 / \sqrt{3})^{n}$ subsets of $[n]$ containing no three distinct members A, B, C satisfying $A \cap B \subseteq C \subseteq A \cup B$.
Deduce that there exists a set of at least $c(2 / \sqrt{3})^{n}$ points in \mathbb{R}^{n} so that all angles determined by three points from the set are acute.
Remark. The current best lower and upper bounds for the maximum size of an "acute set" in \mathbb{R}^{n} (i.e., spanning only acute angles) are $2^{n-1}+1$ and $2^{n}-1$ respectively.

B7. Covering complements of sparse graphs by cliques
(a) Prove that every graph with n vertices and minimum degree $n-d$ can be written as a union of $O\left(d^{2} \log n\right)$ cliques.
(b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition and minimum degree $n-d$ can be written as a union of $O(d \log n)$ complete bipartite graphs (assume $d \geq 1$).
B8. Let $G=(V, E)$ be a graph with n vertices and minimum degree $\delta \geq 2$. Prove that there exists $A \subseteq V$ with $|A|=O(n(\log \delta) / \delta)$ so that every vertex in $V \backslash A$ contains at least one neighbor in A and at least one neighbor not in A.
B9. Prove that every graph G without isolated vertices has an induced subgraph H on at least $\alpha(G) / 2$ vertices such that all vertices of H have odd degree. Here $\alpha(G)$ is the size of the largest independent set in G.

C. SECOND MOMENT METHOD

C1. Threshold for k-APs. Let $[n]_{p}$ denote the random subset of $\{1, \ldots, n\}$ where every element is included with probability p independently. For each fixed integer $k \geq 3$, determine the threshold for $[n]_{p}$ to contain a k-term arithmetic progression.
C 2 . Show that, for each fixed positive integer k, there is a sequence p_{n} such that
$\mathbb{P}\left(G\left(n, p_{n}\right)\right.$ has a connected component with exactly k vertices $) \rightarrow 1 \quad$ as $n \rightarrow \infty$.
Hint in white:
C3. Poisson limit. Let X be the number of triangles in $G(n, c / n)$ for some fixed $c>0$.
(a) For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{X}{k}$ as $n \rightarrow \infty$.
(b) Let $Y \sim \operatorname{Binomial}(n, \lambda / n)$ for some fixed $\lambda>0$. For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{Y}{k}$ as $n \rightarrow \infty$, and show that it agrees with the limit in (a) for some $\lambda=\lambda(c)$.
We know that Y converges to the Poisson distribution with mean λ. Also, the Poisson distribution is determined by its moments.
(c) Compute, for fixed every nonnegative integer t, the limit of $\mathbb{P}(X=t)$ as $n \rightarrow \infty$.
(In particular, this gives the limit probability that $G(n, c / n)$ contains a triangle, i.e., $\lim _{n \rightarrow \infty} \mathbb{P}(X>0)$. This limit increases from 0 to 1 continuously when c ranges from 0 to $+\infty$, thereby showing that the property of containing a triangle has a coarse threshold.)
C 4 . Central limit theorem for triangle counts. Find a real (non-random) sequence a_{n} so that, letting X be the number of triangles and Y be the number of edges in the random graph
$G(n, 1 / 2)$, one has

$$
\operatorname{Var}\left(X-a_{n} Y\right)=o(\operatorname{Var} X)
$$

Deduce that X is asymptotically normal, that is, $(X-\mathbb{E} X) / \sqrt{\operatorname{Var} X}$ converges to the normal distribution.
(You can solve for the minimizing a_{n} directly similar to ordinary least squares linear regression, or first write the edge indicator variables as $X_{i j}=\left(1+Y_{i j}\right) / 2$ and then expand. The latter approach likely yields a cleaner computation.)
C5. Isolated vertices. Let $p_{n}=\left(\log n+c_{n}\right) / n$.
(a) Show that, as $n \rightarrow \infty$,

$$
\mathbb{P}\left(G\left(n, p_{n}\right) \text { has no isolated vertices }\right) \rightarrow \begin{cases}0 & \text { if } c_{n} \rightarrow-\infty \\ 1 & \text { if } c_{n} \rightarrow \infty\end{cases}
$$

(b) Suppose $c_{n} \rightarrow c \in \mathbb{R}$, compute, with proof, the limit of LHS above as $n \rightarrow \infty$, by following the approach in C3.
ps2丸 C6. Is the threshold for the bipartiteness of a random graph coarse or sharp?
(You are not allowed to use any theorems that we did not prove in class/notes.)
C7. Triangle packing. Prove that, with probability approaching 1 as $n \rightarrow \infty, G\left(n, n^{-1 / 2}\right)$ has at least $c n^{3 / 2}$ edge-disjoint triangles, where $c>0$ is some constant.

Hint in white:
C8. Nearly perfect triangle factor. Prove that, with probability approaching 1 as $n \rightarrow \infty$,
(a) $G\left(n, n^{-2 / 3}\right)$ has at least $n / 100$ vertex-disjoint triangles.
(b) Simple nibble. $G\left(n, C n^{-2 / 3}\right)$ has at least $0.33 n$ vertex-disjoint triangles, for some constant C.

Hint in white:
C9. Permuted correlation. Recall that the correlation of two non-constant random variables X and Y is defined to be $\operatorname{corr}(X, Y):=\operatorname{Cov}[X, Y] / \sqrt{(\operatorname{Var} X)(\operatorname{Var} Y)}$.

Let $f, g \in[n] \rightarrow \mathbb{R}$ be two non-constant functions. Prove that there exist permutations π and τ of $[n]$ such that, with Z being a uniform random element of $[n]$,

$$
\operatorname{corr}(f(\pi(Z)), g(Z))-\operatorname{corr}(f(\tau(Z)), g(Z)) \geq \frac{2}{\sqrt{n-1}}
$$

Furthermore, show that equality can be achieved for even n.
Hint in white:
C10. Let $v_{1}=\left(x_{1}, y_{1}\right), \ldots, v_{n}=\left(x_{n}, y_{n}\right) \in \mathbb{Z}^{2}$ with $\left|x_{i}\right|,\left|y_{i}\right| \leq 2^{n / 2} /(100 \sqrt{n})$ for all $i \in[n]$. Show that there are two disjoint sets $I, J \subseteq[n]$, not both empty, such that $\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j}$.
ps3* C11. Prove that there is an absolute constant $C>0$ so that the following holds. For every prime p and every $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|A|=k$, there exists an integer x so that $\{x a: a \in A\}$ intersects every interval of length at least $C p / \sqrt{k}$ in $\mathbb{Z} / p \mathbb{Z}$.
ps3^ C12. Prove that there is a constant $c>0$ so that every hyperplane containing the origin in \mathbb{R}^{n} intersects at least c-fraction of the 2^{n} closed unit balls centered at $\{-1,1\}^{n}$.

D. Chernoff Bound

D1. Prove that with probability $1-o(1)$ as $n \rightarrow \infty$, every bipartite subgraph of $G(n, 1 / 2)$ has at most $n^{2} / 8+10 n^{3 / 2}$ edges.
D2. Unbalancing lights. Prove that there is a constant C so that for every positive integer n, one can find an $n \times n$ matrix A with $\{-1,1\}$ entries, so that for all vectors $x, y \in\{-1,1\}^{n}$, $\left|y^{\top} A x\right| \leq C n^{3 / 2}$.
D3. Prove that there exists a constant $c>1$ such that for every n, there are at least c^{n} points in \mathbb{R}^{n} so that every triple of points form a triangle whose angles are all less than 61°.

D4. Planted clique. Give a deterministic polynomial-time algorithm for the following task so that it succeeds over the random input with probability approaching 1 as $n \rightarrow \infty$.

Input: some unlabeled n-vertex G created as the union of $G(n, 1 / 2)$ and a clique on $t=\lfloor 100 \sqrt{n \log n}\rfloor$ vertices.

Output: a clique in G of size t.
D5. Weighing coins. You are given n coins, each with one of two known weights, but otherwise indistinguishable. You can use a scale that outputs the combined weight of any subset of the coins. You must decide in advance which subsets $S_{1}, \ldots, S_{k} \subseteq[n]$ of the coins to weigh. We wish to determine the minimum number of weighings needed to identify the weight of every coin. (Below, X and Y represent two possibilities for which coins are of the first weight.)

E1. Show that it is possible to color the edges of K_{n} with at most $3 \sqrt{n}$ colors so that there are no monochromatic triangles.
E2. Prove that it is possible to color the vertices of every k-uniform k-regular hypergraph using at most $k / \log k$ colors so that every color appears at most $O(\log k)$ times on each edge.
E3. Hitting thin rectangles. Prove that there is a constant $C>0$ so that for every sufficiently small $\epsilon>0$, one can choose exactly one point inside each grid square $[n, n+1) \times[m, m+1) \subset$ $\mathbb{R}^{2}, m, n \in \mathbb{Z}$, so that every rectangle of dimensions ϵ by $(C / \epsilon) \log (1 / \epsilon)$ in the plane (not necessarily axis-aligned) contains at least one chosen point.
5 E4. List coloring. Prove that there is some constant $c>0$ so that given a graph and a set of k acceptable colors for each vertex such that every color is acceptable for at most $c k$ neighbors of each vertex, there is always a proper coloring where every vertex is assigned one of its acceptable colors.
E5. Prove that, for every $\epsilon>0$, there exist ℓ_{0} and some $\left(a_{1}, a_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ such that for every $\ell>\ell_{0}$ and every $i>1$, the vectors $\left(a_{i}, a_{i+1}, \ldots, a_{i+\ell-1}\right)$ and $\left(a_{i+\ell}, a_{i+\ell+1}, \ldots, a_{i+2 \ell-1}\right)$ differ in at least $\left(\frac{1}{2}-\epsilon\right) \ell$ coordinates.
$\overline{\mathrm{ps} 4}$ E6. Avoiding periodically colored paths. Prove that for every Δ, there exists k so that every graph with maximum degree at most Δ has a vertex-coloring using k colors so that there is no path of the form $v_{1} v_{2} \ldots v_{2 \ell}$ (for any positive integer ℓ) where v_{i} has the same color as $v_{i+\ell}$ for each $i \in[\ell]$. (Note that vertices on a path must be distinct.)
E7. Prove that every graph with maximum degree Δ can be properly edge-colored using $O(\Delta)$ colors so that every cycle contains at least three colors.
(An edge-coloring is proper if it never assigns the same color to two edges sharing a vertex.)
(d) Packing rainbow spanning trees. Prove that there is a constant $c>0$ so that for every edge-coloring of K_{n} where each color appears at most $c n$ times, there exist at least $c n$ edge-disjoint spanning trees, where each spanning tree has all its edges colored differently. (In your submission, you may assume previous parts without proof.)

The next two problems use the lopsided local lemma.
E12. Packing two copies of a graph. Prove that there is a constant $c>0$ so that if H is an n-vertex m-edge graph with maximum degree at most $c n^{2} / m$, then one can find two edgedisjoint copies of H in the complete graph K_{n}.
ps4* E13. Packing Latin transversals. Prove that there is a constant $c>0$ so that every $n \times n$ matrix where no entry appears more than $c n$ times contains $c n$ disjoint Latin transversals.

F. Correlation inequalities

F1. Let $G=(V, E)$ be a graph. Color every edge with red or blue independently and uniformly at random. Let E_{0} be the set of red edges and E_{1} the set of blue edges. Let $G_{i}=\left(V, E_{i}\right)$ for each $i=0,1$. Prove that
$\mathbb{P}\left(G_{0}\right.$ and G_{1} are both connected $) \leq \mathbb{P}\left(G_{0} \text { is connected }\right)^{2}$.
F2. A set family \mathcal{F} is intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$. Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ each be a collection of subsets of $[n]$ and suppose that each \mathcal{F}_{i} is intersecting. Prove that $\left|\bigcup_{i=1}^{k} \mathcal{F}_{i}\right| \leq 2^{n}-2^{n-k}$.
F3. Percolation. Let $G_{m, n}$ be the grid graph on vertex set $[m] \times[n]$ (m vertices wide and n vertices tall). A horizontal crossing is a path that connects some left-most vertex to some right-most vertex. See below for an example of a horizontal crossing in $G_{7,5}$.

Let $H_{m, n}$ denote the random subgraph of $G_{m, n}$ obtained by keeping every edge with probability $1 / 2$ independently.

Let RSW (k) denote the following statement: there exists a constant $c_{k}>0$ such that for all positive integers $n, \mathbb{P}\left(H_{k n, n}\right.$ has a horizontal crossing $) \geq c_{k}$.
(a) Prove RSW (1).
(b) Prove that RSW(2) implies RSW(100).
(c) (Challenging) Prove RSW(2).

F4. Let A and B be two independent increasing events of independent random variables. Prove that there are two disjoint subsets S and T of these random variables so that A depends only on S and B depends only on T.
F5. Let U_{1} and U_{2} be increasing events and D a decreasing event of independent Boolean random variables. Suppose U_{1} and U_{2} are independent. Prove that $\mathbb{P}\left(U_{1} \mid U_{2} \cap D\right) \leq \mathbb{P}\left(U_{1} \mid U_{2}\right)$.
F6. Coupon collector. Let s_{1}, \ldots, s_{m} be independent random elements in [n] (not necessarily uniform or identically distributed; chosen with replacement) and $S=\left\{s_{1}, \ldots, s_{m}\right\}$. Let I and J be disjoint subsets of $[n]$. Prove that $\mathbb{P}(I \cup J \subseteq S) \leq \mathbb{P}(I \subseteq S) \mathbb{P}(J \subseteq S)$.
F7. Prove that there exist $c<1$ and $\epsilon>0$ such that if A_{1}, \ldots, A_{k} are increasing events of independent Boolean random variables with $\mathbb{P}\left(A_{i}\right) \leq \epsilon$ for all i, then, letting X denote the number of events A_{i} that occur, one has $\mathbb{P}(X=1) \leq c$. (Give your smallest c. It is conjectured that any $c>1 / e$ works.)
ps5* F8. Disjoint containment. Let \mathcal{S} and \mathcal{T} each be a collection of subsets of $[n]$. Let $R \subseteq[n]$ be a random subset where each element is included independently (not necessarily with the same probability). Let A be the event that $S \subseteq R$ for some $S \in \mathcal{S}$. Let B be the event that $T \subseteq R$ for some $T \in \mathcal{T}$. Let C denote the event there exist disjoint $S, T \subseteq R$ with $S \in \mathcal{S}$ and $T \in \mathcal{T}$. Prove that $\mathbb{P}(C) \leq \mathbb{P}(A) \mathbb{P}(B)$.

G. JANson inequalities

H1. Sub-Gaussian tails. For each part, prove there is some constant $c>0$ so that, for all $\lambda>0$,

$$
\mathbb{P}(|X-\mathbb{E} X| \geq \lambda \sqrt{\operatorname{Var} X}) \leq 2 e^{-c \lambda^{2}}
$$

(a) X is the number of triangles in $G(n, 1 / 2)$.
(b) X is the number of inversions of a uniform random permutation of $[n]$ (an inversion of $\sigma \in S_{n}$ is a pair (i, j) with $i<j$ and $\left.\sigma(i)>\sigma(j)\right)$.
H2. Prove that for every $\epsilon>0$ there exists $\delta>0$ and n_{0} such that for all $n \geq n_{0}$ and $S_{1}, \ldots, S_{m} \subset$ [2n] with $m \leq 2^{\delta n}$ and $\left|S_{i}\right|=n$ for all $i \in[m]$, there exists a function $f:[2 n] \rightarrow[n]$ so that $\left(1-e^{-1}-\epsilon\right) n \leq\left|f\left(S_{i}\right)\right| \leq\left(1-e^{-1}+\epsilon\right) n$ for all $i \in[m]$.
H3. Simultaneous bisections. Fix Δ. Let G_{1}, \ldots, G_{m} with $m=2^{o(n)}$ be connected graphs of maximum degree at most Δ on the same vertex set V with $|V|=n$. Prove that there exists a partition $V=A \cup B$ so that every G_{i} has $(1+o(1)) e\left(G_{i}\right) / 2$ edges between A and B.
ps5* H4. Prove that there is some constant $c>0$ so that for every graph G with chromatic number k, letting S be a uniform random subset of V and $G[S]$ the subgraph induced by S, one has, for every $t \geq 0$,

$$
\mathbb{P}(\chi(G[S]) \leq k / 2-t) \leq e^{-c t^{2} / k}
$$

H10. Show that for every $\epsilon>0$ there exists $C>0$ so that every $S \subseteq[4]^{n}$ with $|S| \geq \epsilon 4^{n}$ contains four elements with pairwise Hamming distance at least $n-C \sqrt{n}$ apart.
H11. Concentration of measure in the symmetric group. Let $U \subseteq S_{n}$ be a set of at least $n!/ 2$ permutations of $[n]$. Let U_{t} denote the set of permutations that can be obtained starting from some element of U and then applying at most t transpositions. Prove that

$$
\left|U_{t}\right| \geq\left(1-e^{-c t^{2} / n}\right) n!
$$

for every $t \geq 0$, where $c>0$ is some constant.
Hint in white:
For the remaining exercises in this section, use Talagrand's inequality
H12. Let Q be a subset of the unit sphere in \mathbb{R}^{n}. Let $\boldsymbol{x} \in[-1,1]^{n}$ be a random vector with independent random coordinates. Let $X=\sup _{\boldsymbol{q} \in Q}\langle\boldsymbol{x}, \boldsymbol{q}\rangle$. Let $t>0$. Prove that

$$
\mathbb{P}(|X-\mathbb{M} X| \geq t) \leq 4 e^{-c t^{2}}
$$

where $c>0$ is some constant.

H14. Second largest eigenvalue of a random matrix. Let A be an $n \times n$ random symmetric matrix whose entries on and above the diagonal are independent and in $[-1,1]$. Show that the second largest eigenvalue $\lambda_{2}(A)$ satisfies

$$
\mathbb{P}\left(\left|\lambda_{2}(A)-\mathbb{E} \lambda_{2}(A)\right| \geq t\right) \leq C e^{-c t^{2}}
$$

for every $t \geq 0$, where $C, c>0$ are constants.
Hint in white:
H15. Longest common subsequence. Let $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$ be two random sequences with independent entries (not necessarily identically distributed). Let X denote the length of the longest common subsequence, i.e., the largest k such that there exist $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{k}$ with $x_{i_{1}}=y_{j_{1}}, \ldots, x_{i_{k}}=y_{j_{k}}$. Show that, for all $t \geq 0$,

$$
\mathbb{P}(X \geq \mathbb{M} X+t) \leq 2 \exp \left(\frac{-c t^{2}}{\mathbb{M} X+t}\right) \quad \text { and } \quad \mathbb{P}(X \leq \mathbb{M} X-t) \leq 2 \exp \left(\frac{-c t^{2}}{\mathbb{M} X}\right)
$$

where $c>0$ is some constant.

I. Entropy method

The problems in this section should be solved using entropy arguments or results derived from entropy arguments.

I1. Submodularity. Prove that $H(X, Y, Z)+H(X) \leq H(X, Y)+H(X, Z)$.
I2. Let \mathcal{F} be a collection of subsets of $[n]$. Let p_{i} denote the fraction of \mathcal{F} that contains i. Prove that

$$
|\mathcal{F}| \leq \prod_{i=1}^{n} p_{i}^{-p_{i}}\left(1-p_{i}\right)^{-\left(1-p_{i}\right)}
$$

I3. Uniquely decodable codes. Let $[r]^{*}$ denote the set of all finite strings of elements in $[r]$. Let A be a finite subset of $[r]^{*}$ and suppose no two distinct concatenations of sequences in A can produce the same string. Let $|a|$ denote the length of $a \in A$. Prove that

$$
\sum_{a \in A} r^{-|a|} \leq 1
$$

I4. Sudoku. A $n^{2} \times n^{2}$ Sudoku square (the usual Sudoku corresponds to $n=3$) is an $n^{2} \times n^{2}$ array with entries from $\left[n^{2}\right]$ so that each row, each column, and, after partitioning the square into $n \times n$ blocks, each of these n^{2} blocks consist of a permutation of $\left[n^{2}\right]$. Prove that the
number of $n^{2} \times n^{2}$ Sudoku squares is at most

$$
\left(\frac{n^{2}}{e^{3}+o(1)}\right)^{n^{4}}
$$

ps6 I5. Prove Sidorenko's conjecture for the following graph.

ps6* I6. Triangles versus vees in a directed graph. Let V be a finite set, $E \subseteq V \times V$, and

$$
\triangle=\left|\left\{(x, y, z) \in V^{3}:(x, y),(y, z),(z, x) \in E\right\}\right|
$$

(i.e., cyclic triangles; note the direction of edges) and

$$
\wedge=\left|\left\{(x, y, z) \in V^{3}:(x, y),(x, z) \in E\right\}\right| .
$$

Prove that $\triangle \leq \wedge$.
I7. Box theorem. Prove that for every compact set $A \subseteq \mathbb{R}^{d}$, there exists an axis-aligned box $B \subseteq \mathbb{R}^{d}$ with

$$
\operatorname{vol} A=\operatorname{vol} B \quad \text { and } \quad \operatorname{vol} \pi_{I}(A) \geq \operatorname{vol} \pi_{I}(B) \quad \text { for all } I \subseteq[n] .
$$

Here π_{I} denotes the orthogonal projection onto the I-coordinate subspace.
(For the purpose of the homework, you only need to establish the case when A is a union of grid cubes. It is optional to give the limiting argument for compact A.)
I8. Let \mathcal{G} be a family of graphs on vertices labeled by [2n] such that the intersection of every pair of graphs in \mathcal{G} contains a perfect matching. Prove that $|\mathcal{G}| \leq 2^{\binom{2 n}{2}-n}$.
I9. Loomis-Whitney for sumsets. Let A, B, C be finite subsets of some abelian group. Writing $A+B:=\{a+b: a \in A, b \in B\}$, etc., prove that

$$
|A+B+C|^{2} \leq|A+B||A+C||B+C| .
$$

ps6* I10. Shearer for sums. Let X, Y, Z be independent random integers. Prove that

$$
2 H(X+Y+Z) \leq H(X+Y)+H(X+Z)+H(Y+Z)
$$

MIT OpenCourseWare
https://ocw.mit.edu
18.226 Probabilistic Methods in Combinatorics

Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

