1. Compute the 1-loop contribution to $\ln \left(Z / Z_{0}\right)$ for $S(x)=x^{2} / 2-g\left(x+x^{3} / 6\right)$. Using this, compute the number of labeled n-vertex 1-loop graphs with 1-valent and 3 -valent vertices only.
2. Find the generating function $\sum a_{n} z^{n} / n$! for the numbers a_{n} of labeled nvertex trees with 1 -valent and 4 -valent vertices. You may express the answer via inverse functions to polynomials.
3. Find the one-loop contribution to the effective action for $S(x)=x^{2} / 2+g x^{3} / 3$!. That is,one has $S_{\text {eff }}=S+\hbar S_{1}+O\left(\hbar^{2}\right)$, and you need to find S_{1}. Which Feynman diagrams need to be considered?
