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8. Operator approach to quantum mechanics 

In mechanics and field theory (both classical and quantum), there are two main languages – La-
grangian and Hamiltonian. In the classical setting, the Lagrangian language is the language of vari-
ational calculus (i.e. one studies extremals of the action functional), while the Hamiltonian language 
is that of symplectic geometry and Hamilton equations. Correspondingly, in the quantum setting, the 
Lagrangian language is the language of path integrals, while the Hamiltonian language is the language 
of operators and Schrödinger equation. We have now studied the first one (at least in perturbation 
expansion) and are passing to the second. 

8.1. Hamilton’s equations in classical mechanics. We start with recalling the Lagrangian for-
malism of classical mechanics. For more details, we refer the reader to the excellent book of Arnold 
“Mathematical methods of classical mechanics”. 

Consider the motion of a classical particle (or system of particles). The position of a particle is 
described by a point q of the configuration space X , which we will assume to be a manifold. The 
Lagrangian of the system is a (smooth) function L : TX  → R on the total space of the tangent bundle 
of X . Then the action functional is S(q) =  L(q, q̇)dt. The trajectories of the particle are the extremals 
of S. The condition for q(t) to be an  extremal  of  S is equivalent to the Euler-Lagrange equation (=the 
equation of motion), which in local coordinates has the form 

d ∂L ∂L
) =

dt
( 
∂q̇ ∂q 

. 

For example, if X is a Riemannian manifold, and L(q, v) =  v2/2 −U(q), where U : X → R is a potential 
function, then the Euler-Lagrange equation is the Newton equation 

q̈ = −gradU(q), 

where q̈ = ∇q̇ q̇ is the covariant derivative with respect to the Levi-Civita connection. 
Consider now a system with Lagrangian L(q, v), whose differential with respect to v (for fixed q) is  

∗a diffeomorphism Tq X → Tq X . This is definitely true in the above special case of Riemannian X . 

Definition 8.1. The Hamiltonian (or energy function) of the system with Lagrangian L is the function 
H : T ∗X → R, which is the Legendre transform of L along fibers; that is, H(q, p) =  pv0 − L(q, v0), 

∗where v0 is the (unique) critical point of pv − L(q, v). The manifold T X is called the phase space (or 
space of states). The  variable  p is called the momentum variable. 

For example, if L = v2/2 − U(q), then H(q, p) =  p2/2 +  U(q). 
Remark. Since Legendre transform is involutive, we also have that the Lagrangian is the fiberwise 

Legendre transform of the Hamiltonian. 
Let qi be local coordinates on X . This coordinate system defines a coordinate system (qi, pi) on  

∗T X . 

Proposition 8.2. The equations of motion are equivalent to the Hamilton equations 

∂H ∂H 
q̇i = , ṗi = − ,

∂pi ∂qi 

in the sense that they are obtained from Hamilton’s equations by elimination of pi. 

It is useful to write Hamilton’s equations in terms of Poisson brackets. Recall that the manifold 
∗ ∗T X has a canonical symplectic structure ω. In  fact,  ω = dα, where  α is a canonical 1-form on T M 

∗constructed as follows: for any z ∈ T(q,p)(T X), α(z) =  (p, dπ(q, p)z), where π : T ∗X → X is the 
projection. In local coordinates, we have α = pidqi, and  ω = dpi ∧ dqi. 

∗Now let (M, ω) be a symplectic manifold (in our case M = T X). Since ω is nondegenerate, one can 
define the Poisson bivector ω−1, which is a section of the bundle ∧2TM . Now,  given  any  two  smooth  
functions f, g on M , one can define a third function – their Poisson bracket 

{f, g} = (df ⊗ dg, ω−1) 
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This operation is skew-symmetric and satisfies Jacobi identity, i.e. it is a Lie bracket on C∞(M). For 
∗M = T X , in local coordinates we have � ∂f ∂g ∂f ∂g{f, g} = − . 

∂qi ∂pi ∂pi ∂qii 

This shows that Hamilton’s equations can be written in the following manner in terms of Poisson 
brackets: 

d
(21)	 f(q(t), p(t)) = {f, H}(q(t), p(t)). 

dt 
∗for any smooth function (“classical observable”) f ∈ C∞(T X). In other words, Hamilton’s equations 

say that the rate of change of the observed value of f equals the observed value of {f, H}. 
Note that for a given Lagrangian, the unique function H (up to adding a constant) for which equations 

(21) are equivalent to the equations of motion is the Hamiltonian. This provides another definition of 
the Hamiltonian, which does not use the notion of the Legendre transform. 

8.2. Hamiltonians in quantum mechanics. The yoga of quantization says that to quantize classical 
∗mechanics on a manifold X we need to replace the classical space of states T X by the quantum space 

of states – the Hilbert space H = L2(X)  on square integrable complex half-densities on X (or, more 
precisely, the corresponding projective space). Further, we need to replace classical observables, i.e. real 
functions f ∈ C∞(T ∗X), by quantum observables f̂ , which are (unbounded) self-adjoint operators on 
H (not commuting with each other, in general). Then the (expected) value of an observable A at a 
state ψ ∈ H of unit norm is by definition (ψ, Aψ). 

The operators f̂ should linearly depend on f . More importantly, they should depend on a positive 
real parameter � called the Planck constant, and satisfy the following relation: 

ˆ {f, g} + O(�2), � → 0.[f, ĝ] =  i�̂

Since the role of Poisson brackets of functions is played in quantum mechanics by commutators of 
operators, this relation expresses the condition that classical mechanics should be the limit of quantum 
mechanics as � → 0. 

We must immediately disappoint the reader by confessing that there is no canonical choice of the 
quantization map f → f̂ . Nevertheless, there are some standard choices of f̂ for particular f , which  we  
will now discuss. 

Let us restrict ourselves to the situation X = R, so on the phase space we have coordinates q 
(position) and p (momentum). In this case there are the following standard conventions. 

1. f̂ = f(q) (multiplication operator by f(q)) when f is independent of p.

pm → (−i� d .
2.	 �

dq )
m


ˆ p] =  i�, while {q, p} = 1.) 
(Note that these conventions satisfy our condition, since [q, ˆ
Example. For the classical Hamiltonian H = p2/2 +  U(q) considered above, the quantization will 

2 d2
be Ĥ = − �2 dq2 + U(q). 

Remark. The extension of these conventions to other functions is not unique. However, such an 
extension will not be used, so we will not specify it. 

Now let us see what the quantum analog of Hamilton’s equations should be. In accordance with the 
outlined quantization yoga, Poisson brackets should be replaced in quantum theory by commutators 
(with coefficient (i�)−1 = −i/�). Thus, the Hamilton’s equation should be replaced by the equation 

d	 [A, ˆ
(ψ(t), Aψ(t)) = (ψ(t), ψ(t)) = − 

H ] i 
(ψ(t), [A, Ĥ ]ψ(t)),

dt	 i� �

where (, ) is the Hermitian form on H (antilinear on the first factor) and Ĥ is some quantization of the 
classical Hamiltonian H . Since this equation must hold for any A, it is equivalent to the Schrödinger 
equation 

i ˆψ̇ = − Hψ. 

Thus, the quantum analog of the Hamilton equation is the Schrödinger equation. 



� 

50 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

Remark. This “derivation” of the Schrödinger equation is definitely not a mathematical argument. 
It is merely a reasoning aimed to motivate a definition. 

The general solution of the Schrödinger equation has the form 

H/�ψ(0).ψ(t) =  e −it ˆ

Therefore, for any quantum observable A it is reasonable to define a new observable A(t) =  
H/�A(0)e−it ˆeit ˆ H/� (such that to observe A(t) is the same as to evolve for time t and then observe  A). 

The observable A(t) satisfies the equation 

ˆA′(t) =  −i[A(t), H ]/�, 

and we have 

(ψ(t), Aψ(t)) = (ψ(0), A(t)ψ(0)). 

The two sides of this equation represent two pictures of quantum mechanics: Heisenberg’s (observables 
change, states don’t), and Schrödinger’s (states change, observables don’t). The equation expresses the 
equivalence of the two pictures. 

8.3. Feynman-Kac formula. Let us consider a 1-dimensional particle with potential U(q) =  m2q2 + 

j≥3 gj q
j /j!. Let us assume that U ≥ 0 and  U(q) → ∞  as |q| →  ∞. In this case, the operator 
2 2ˆ dH = −�

dq2 + U(q) is positive definite, and its spectrum is discrete. In particular, we have unique 2 
lowest eigenvector Ω, which is given by a positive function with norm 1. The correlation functions in 
the Hamiltonian setting are defined by the formula 

GHam(t1, ..., tn) :=  (Ω, q(t1)...q(tn)Ω).n 

Remark 1. The vector Ω is called the ground, or vacuum state, since it has lowest energy, and 
physicists often shift the Hamiltonian by a constant, so that the energy of this state is zero (i.e. there 
is no matter). 

Remark 2. Physicists usually write the inner product (v, Aw) as  < v|A|w >. In  particular,  Ω  is  
written as < 0| or |0 >. 

Theorem 8.3. (Feynman-Kac formula) If t1 ≥  · · ·  ≥  tn then the function GHam admits an asymptotic n 
expansion in � (near � = 0), which coincides with the path integral correlation function GM constructed n 
above. Equivalently, the Wick rotated function GHam(−it1, . . . ,−itn) equals GE .n n 

This theorem plays a central role in quantum mechanics, and we will prove it below. Before we do 
so, let us formulate an analog of this theorem for “quantum mechanics on the circle”. 

Let Gn,L(t1, . . . , tn) denote the correlation function on the circle of length L (for 0 ≤ tn ≤  · · ·  
≤ t1 ≤ L), and let ZL be the partition function on the circle of length L, defined from path integrals. 
Also, let 

ZHam H/�),= Tr(e −L ˆ
L 

and 
H/�)Gn,L(t1, . . . , tn) =  

Tr(q(−itn) · · · q(−it1)e−L ˆ

−L Ĥ/�)Tr(e

ZHam , GHamTheorem 8.4. (Feynman-Kac formula on the circle) The functions L n,L admit asymptotic 
expansions in �, which coincide with the functions ZL and Gn,L computed from path integrals. 

Note that Theorem 8.3 is obtained from Theorem 8.4 by sending L to infinity. Thus, it is sufficient 
to prove Theorem 8.4. 

Remark. As we mentioned before, the function GE can be defined by means of Wiener integral, n 

n (t1, . . . , tn) actually holds for numerical values of �, and  and the equality GHam(−it1, . . . ,−itn) =  GE 
n 

not only in the sense of power series expansions. The same applies to the equalities ZHam = ZL,L 
GHam = Gn,L. However, these results is technically more complicated and are beyond the scope of these n,L 
notes. 
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Example. Consider the case of the quadratic potential. By renormalizing variables, we can assume 
1that � = m = 1,  so  U = q2/2. In this case we know that ZL = 2 sinh(L/2) . On the other hand, Ĥ is the 

Hamiltonian of the quantum harmonic oscillator: 

2 
ˆ 1 d2 

+ 
q

H = − 
2 

.
2 dq2 

The eigenvectors of this operator are well known: they are Hk (x)e−x 2/2, where  Hk are the Hermite 
polynomials (k ≥ 0), and the eigenvalues are k + 1/2 (see Theorem 4.10). Hence, 

1 
ZHam = e −L/2 + e −3L/2 + · · ·  = = ZL,L eL/2 − e−L/2 

as expected from the Feynman-Kac formula. (This shows the significance of the choice C = 1/2 in  the  
normalization of ZL). 

8.4. Proof of the Feynman-Kac formula in the free case. Consider again the quadratic Hamil-
H = − 1 2

tonian ˆ 2
d .  Note that it can  be  written in  the  form  2 dq2 + q 

2 

ˆ †H = a a + 1/2, 

1 ( d 1where a = √ + q), a† = √ (− d + q). The operators a, a† define a representation of the Heisenberg 
2 dq 2 dq 

algebra on H: 

[a, a †] =  1. 

Thus the eigenvectors of Ĥ are (a†)nΩ (where  Ω  =  e−q 2/2) is the lowest eigenvector), and the eigenvalues 
n + 1 (as we already saw before in Theorem 4.10). 2 

Remark. The operators a and a† are called the annihilation and creation operators, since aΩ = 0,  
†while all eigenvectors of Ĥ can be “created” from Ω by action of powers of a .


Now, we have


1

q(0) = q = √ (a + a †). 

2 
† †Since [a a, a] =  −a, [a a, a†] =  a†, we  have  

q(t) =  √ 
1 

e ita † a(a + a †)e −ita † a = √ 
1

(e −it a + e it a †)
2 2 

This shows that 
n −L(a † a+ 2 ))GHam 

n,L (−it1, . . . ,−itn) =  2−n/2 
Tr( 

�
j=1(e

tj a† + e−tj a
1 

)e
1 

. 
Tr(e−L(a†a+ 2 )) 

Now we can easily prove Theorem 8.4. Indeed, let us move the terms et1a† and e−t1a around the trace 
(using the cyclic property of the trace). This will yield, after a short calculation, 

n� 1 tj−t1et1−tj eGHam (t1, . . . , tn) =  
2 
Gn−2,L(t2, . . . , tj−1, tj+1, . . . , tn)( 

eL − 1 
− −L − 1

) =n,L e
j=2 

n

Gn−2,L(t2, . . . , tj−1, tj+1, . . . , tn)GL(t1 − tj ). 
j=2 

This implies the theorem by induction. 
Note that in the quadratic case there is no formal expansions and the Feynman-Kac formula holds 

as an equality between usual functions. 
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8.5. Proof of the  Feynman-Kac  formula  (general  case).  Now we consider an arbitrary potential 
U = m2q2/2 +  V (q), where V (q) =  k≥3 gkqk /k!. For simplicity we will assume that � = 1  and  
coefficients gj as formal parameters (this does not cause a loss of generality, as this situation can be 

achieved by rescaling). Let us first consider the case of partition function. We have ZHam = Tr(e−L Ĥ ) =L 
dTr(e−L( ˆ

H0 = − 1
2 

H0+V )), where ˆ
2 dq

2

2 + 1 m2q2 is the free (=quadratic) part of the Hamiltonian. Since gj 

are formal parameters, we have a series expansion 
(22) 

ˆ−(sn−1−sn) ˆ−L( ˆ −L ˆ	 −(L−s1) ˆ H0V · · · e H0V e−snH0dse H0+V ) = e H0+ (−1)N e H0V e−(s1−s2) ˆ

N ≥1 L≥s1≥...≥sN ≥0 

This follows from the general fact that in the (completed) free algebra with generators A, B, one has 

A+B(23)	 e = e A + e(1−s1)ABe(s1−s2)AB · · · e(sN−1−sN )ABesN Ads 
N ≥1 1≥s1≥···≥sN ≥0 

(check this identity!). 
Equation 22 shows that 

∞
ZHam = (−1)N gj1 · · · gjN	 H0),

j1! · · · jN ! 
Tr(q0(−is1)j1 · · · q0(−isN )jN e −L ˆ

L

N ≥0 j1,...,jN=3


where q0(t) is the operator q(t) in the free theory, associated to the potential m2q2/2. 
Since the Feynman-Kac formula for the free theory has been proved, the trace on the right hand 

side can be evaluated as a sum over pairings. To see what exactly is obtained, let us collect the terms 
corresponding to all permutations of j1, .., jN together. This means that the summation variables will 
be the numbers i3, i4, . . .  of occurrences of 3, 4, . . .  among j1, . . . , jN . Further, to every factor q0(−is)j 

will be assigned a j-valent vertex, with a variable s attached to it, and it is easy to see that ZHam equalsL 
the sum over all ways of connecting the vertices (i.e. Feynman diagrams Γ) of integrals 

GL(sv − sw )ds, 
0≤s1,...,sN≤L edgesv−w 

multiplied by the coefficients 
Q

(−gk)ik . Thus,  ZHam = ZL, as desired. |AutΓ| L 

Now let us consider correlation functions. Thus we have to compute 

H ˆH −(t1−t2) ˆ
q · · · qe −tnH ).Tr(e −(L−t1) ˆ

qe 

Expanding each exponential inside the trace as above, we will clearly get the same Feynman diagram 
sum, except that the Feynman diagrams will contain n external vertices marked by variables t1, . . . , tn. 
This implies that GHam = Gn,L, and we are done. n,L 

8.6. The massless case. Consider now the massless case, m = 0, in the Hamiltonian setting. For maps 
2 d2 

q : R → R, we  have  H = L2(R), and ˆ This operator has continuous spectrum, and there is H = −�

2 dq2 . 
no lowest eigenvector Ω (more precisely, there is a lowest eigenvector Ω = 1, but it is not in L2), which 
means that we cannot define the correlation functions in the usual way, i.e. as < Ω, q(t1) . . . q(tn)Ω >. 
(This is the reflection, in the Hamiltonian setting, of the difficulties related to the growth of the Green’s 
function at infinity, which we encountered in the Lagrangian setting). 

Consider now the case q : R → S1 = R/2πrZ. In this case, we have the same Hamiltonian but acting 
2in the space H := L2(S1). The eigenvectors of this operator are eiN q/r , with eigenvalues �2N2/2r . 

In particular, the lowest eigenvector is Ω = 1. Thus the Hamiltonian correlation functions (in the 
Euclidean setting, for t1 ≥ . . .  ≥ tn) are  

ˆ H/� ipnq/r e −tn 
ˆ(Ω, e  t1H/� ip1q/r e(t2−t1) ˆ

e · · · e H/�Ω) = 
� 
2 

P
(tj−tj+1)(p1+···+pj)

2 
e 2r	 , 

which is equal to the correlation function in the Lagrangian setting. Thus the Feynman-Kac formula 
holds. 
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Now we pass to the case of quantum mechanics on the circle. First consider circle valued maps q. In  
2H/�) =  

� −N 2L�/2r , and  this case, we have Tr(e−L ˆ
N e

� 
2 

Pnˆ H/� · · · eipnq/r e(L−tn) ˆTr(e t1H/� eip1q/r e(t2−t1) ˆ H/�) =  j=0(tj−tj+1)(N −p1−···−pj)
2 
,2re 

N 

where tn+1 := L, t0 := 0. Simplifying this expression, we obtain 
� 
2 

P
j(tj−tj+1)(p1+···+pj)

2 � − 
2r2 (LN 2 j=1 pjtjN )� +2 

Pn 

e 2r e = 
N 

L�� 
2 

P
j(tj−tj+1)(p1+···+pj)

2 
θ( 

� � 
pj tj ,

r2 
).2re 

2πir2 

Comparing with (20), we see that the Feynman-Kac formula holds, and follows from the modular 
invariance of the theta-function: 

2/T θ(
2πu 4π2 

θ(u, T ) =  e −2π2 u , ). 
iT T 

(which follows from the Poisson summation formula). 
Note that the Feynman-Kac formula would be false if in the Lagrangian setting we had ignored the 

topologically nontrivial maps. Thus we may say that the Feynman-Kac formula “sees topology”. This 
ability of the Feynman-Kac formula to “see topology” (in much more complex situations) lies at the 
foundation of many interrelations between geometry and quantum field theory. 

Remark. It should be noted that the contributions of topologically nontrivial maps from the source 
circle to the target circle are, strictly speaking, beyond our usual setting of perturbation theory, since 
they are exponentially small in �. To be specific, the contribution from maps of degree N mostly comes 
from those maps which are close to the minimal action map qN (t) = 2πtN r/L, so it is of the order 

2
e−2π2N 2 r /L� . The maps qN (t) are the simplest examples of “instantons” — nonconstant solutions of 
the classical equations of motion, which have finite action (and are nontrivial in the topological sense). 
Exponentially small contributions to the path integral coming from integration over neighborhoods of 
instantons are called “instanton corrections to the perturbation series”. 


