Homework 6; due Thursday, Nov. 21

1. Let A be a block 2 by 2 matrix over a supercommutative $\operatorname{ring} R$ with A_{11}, A_{22} being square matrices of sizes $n \geq 0, m \geq 0$ with even entries, and A_{12}, A_{21} having odd entries. The supertrace of A is $\operatorname{str} A:=\operatorname{tr} A_{11}-\operatorname{tr} A_{22}$
(a) Show that $\operatorname{str}(A B)=\operatorname{str}(B A)$ for A, B as above. Is this satisfied for the usual trace?
(b) Show that $e^{\operatorname{str} A}=\operatorname{Ber}\left(e^{A}\right)$.
2. Let Y be the real superspace of matrices as in problem 1 , which are symmetric in the supersense (i.e. A_{11} is symmetric, A_{22} skew, and $A_{12}^{T}=A_{21}$), and $Y_{+} \subset Y$ be the superdomain of those matrices for which $A_{11}>0$. Let $d A$ be a supervolume element on Y. Let f be a compactly supported smooth function on Y_{+}. Show that,

$$
\int_{Y_{+} \times \mathbb{R}^{n \mid m}} f(A) e^{-x^{T} A_{11} x-2 x^{t} A_{12} \xi-\xi^{T} A_{22} \xi} d A d x(d \xi)^{-1}=C \int_{Y_{+}} f(A) \operatorname{Ber}(A)^{-1 / 2} d A
$$

(C is a constant). What is C ?
3. Prove the Amitsur-Levitzki identity: if $X_{1}, \ldots, X_{2 n}$ are n by n matrices over a commutative ring, then $\sum_{\sigma \in S_{2 n}} \operatorname{sign}(\sigma) X_{\sigma(1)} \cdots X_{\sigma(2 n)}=0$.

Hint.
(a) Show that for any n by n matrix X with anticommuting entries, $X^{2 n}=$ 0 . (show that traces of $X^{2 k}$ vanish for all positive k, then use HamiltonCayley).
(b) Apply it to $X=\sum X_{i} \xi_{i}$, where ξ_{i} are anticommuting variables.

