Homework 3; due Thursday, Oct. 3

1. Generalize t'Hooft's theorem to integrals over quaternionic Hermitian matrices.
2. Find the number of ways to glue an orientable surface of genus $g \geq 1$ from a $4 g$-gon (the gluing must preserve orientation), and prove your answer.

Answer: $(4 \mathrm{~g}-1)!!/(2 \mathrm{~g}+1)$.
3. Consider a random Hermitian matrix $A \in \mathfrak{h}_{N}$, distributed with Gaussian density $e^{-\operatorname{Tr}\left(A^{2}\right)} d A$. Show that the most likely eigenvalues of A are the roots of the N-th Hermite polynomial H_{N}.

Hint.
(1) Write down the system of algebraic equations for the maximum of the density on eigenvalues.
(2) Introduce the polynomial $P(z)=\prod_{i}\left(z-\lambda_{i}\right)$, where λ_{i} are the most likely eigenvalues. Let $f=P^{\prime} / P$. Compute $f^{\prime}+f^{2}$ (look at the poles).
(3) Reduce the obtained Riccati equation for f to a second order linear differential equation for P. Show that this equation is the Hermite's equation, and deduce that $P=H_{N} / 2^{N}$.

