
2. The steepest descent and stationary phase formulas

Now, let us forget for a moment that the integrals (1.1,1.3,1.5) are
infinite dimensional and hence problematic to define, and ask ourselves
the following question: why should we expect to recover the usual clas-
sical mechanics or field theory when the parameter κ or ~ goes to zero?
The answer is that this expectation is based on the steepest descent (re-
spectively, stationary phase) principle from classical analysis: if f(x)

is a function on Rd then the integrals
∫
g(x)e−

f(x)
κ dx,

∫
g(x)e

if(x)
~ dx

“localize” to minima, respectively critical points, of the function f . As
this classical fact is of central importance to the whole subject, let us
now discuss it in some detail.

2.1. Gaussian integrals. We start with auxiliary facts from linear
algebra and analysis. Let V be a real vector space of dimension d.
Let M(V ) be the set of non-degenerate complex-valued symmetric bi-
linear forms on V with non-negative definite real part. We have an
open dense subset M◦(V ) ⊂M(V ) of forms with positive definite real
part. If B = P + iQ ∈ M◦(V ) where P,Q are the real and imagi-
nary parts of B, then P−1Q : V → V is a self-adjoint operator with
respect to P , which therefore has real eigenvalues and diagonalizes
in an orthonormal basis. In this basis B(x, y) =

∑d
j=1 ajxjyj where

Re(aj) = 1. Thus B−1 ∈ M◦(V ∗). It follows that the map B 7→ B−1

is a homeomorphism M(V ) ∼= M(V ∗) which restricts to a homeomor-
phism M◦(V ) ∼= M◦(V ∗).

Now fix a translation-invariant volume form dx on V . Then for
every complex-valued symmetric bilinear form B on V we can define its
determinant detB. Thus we can define a continuous function (detB)−

1
2

on M(V ) using the branch of the square root which is positive on
positive definite forms (it exists and is unique because M(V ) is star-
like with respect to any point of M◦(V ), hence simply connected). Note

that if B = iQ where Q is a real non-degenerate form then (detB)−
1
2 =

e
πiσ(Q)

4 | detQ|− 1
2 , where σ is the signature of Q. Indeed, it suffices to

check the statement for diagonal forms, hence for d = 1, in which case
it is straighforward.

Let S(V ) be the Schwartz space of V , i,.e., the space of smooth
functions on V whose all derivatives are rapidly decaying at ∞ (faster
than any power of |x|). In other words, S(V ) is the space of smooth
functions f on V such that D(V )f ⊂ L2(V ), where D(V ) is the al-
gebra of differential operators on V with polynomial coefficients. The
Schwartz space has a natural Fréchet topology defined by the semi-
norms ||Df ||L2 , D ∈ D(V ). The topological dual space S ′(V ) is the
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space of tempered distributions on V . Note that we have natural inclu-
sions S(V ) ⊂ L2(V ) ⊂ S ′(V ). Recall that the Fourier transform is the
operator

F : S(V )→ S(V ∗)

given by

F(g)(p) := (2π)−
d
2

∫
V

g(x)e−i(p,x)dx,

which defines an isometry L2(V ) → L2(V ∗) such that (F2g)(x) =
g(−x). By duality, it defines an operator

F : S ′(V )→ S ′(V ∗)

which extends F . For any complex symmetric bilinear form B with
ReB ≥ 0 the function e−

1
2
B(x,x) belongs to S ′(V ), and moreover to

S(V ) iff B ∈ M◦(V ). Furthermore, it depends continuously on B
as an element of these spaces. We will call it the complex Gaussian
distribution.

Lemma 2.1. (Gaussian integral) For any B ∈M(V ) we have

F(e−
1
2
B(x,x)) = (detB)−

1
2 e−

1
2
B−1(p,p).

Proof. By continuity, it suffices to prove this when ReB > 0. In this
case B is diagonalizable, so the statement reduces to the case d = 1.
In this case we have to show that for every a ∈ C with Rea > 0,

1√
2π

∫ ∞
−∞

e−ipx−
1
2
ax2

dx =
1√
a
e−

1
2a
p2

.

Since both sides are holomorphic in a, it is enough to check the state-
ment when a is real. The integral in question can be written as

e−
1
2
a−1p2

√
2π

∫ ∞
−∞

e−
1
2
a(x+ia−1p)2

dx.

But using Cauchy’s theorem,

1√
2π

∫ ∞
−∞

e−
1
2
a(x+ia−1p)2

dx =
1√
2π

∫
R+ia−1p

e−
1
2
ax2

dx =
1√
2π

∫
R
e−

1
2
ax2

dx.

Thus the result follows from the Poisson integral∫ ∞
−∞

e−x
2

dx =
√
π.

by rescaling x. �
16



In the sense of Lemma 2.1 we can say, setting p = 0, that

(2.1) (2π)−
d
2

∫
V

e−
1
2
B(x,x)dx = (detB)−

1
2 .

Note that this equality is also true in the sense of absolute convergence
if B ∈M◦(V ) and conditional convergence otherwise (check it!).

2.2. Gaussian integrals with insertions. Now let g ∈ S(V ). Con-
sider the integral

Ig(~) :=

∫
V

g(~
1
2x)e−

1
2
B(x,x)dx, ~ ≥ 0,

where for ~ = 0 we use (2.1), so

(2.2) Ig(0) = (2π)
d
2 (detB)−

1
2 g(0).

Let ∆B : S(V ) → S(V ) be the Laplace operator corresponding to

B: ∆B =
∑d

j=1 ∂B−1e∗j
∂ej for a basis {ei} of V .

Theorem 2.2. We have

I ′g(~) = I1
2

∆Bg
(~), ~ ≥ 0.

Thus Ig ∈ C∞[0,∞). In particular, if g vanishes at the origin to order

2n+ 1 then Ig(0) = ... = I
(n)
g (0) = 0.

The rest of the subsection is occupied by the proof of Theorem 2.2.

Lemma 2.3. Ig is a continuous function.

Proof. Only continuity at ~ = 0 requires proof. By Plancherel’s theo-
rem and Lemma 2.1,

Ig(~) = (g(~
1
2x), e−

1
2
B(x,x)) =

~−
d
2 (detB)−

1
2 (ĝ(~−

1
2p), e−

1
2
B−1(p,p)) = (detB)−

1
2 (ĝ(p), e−

~
2
B−1(p,p)),

where ĝ is the Fourier transform of g. But e−
~
2
B−1(p,p) → 1 in S ′(V ∗)

as ~→ 0 (as the complex Gaussian distribution depends continuously
of the bilinear form). Thus

lim
~→0

Ig(~) = (detB)−
1
2 (ĝ(p), 1) = (2π)

d
2 (detB)−

1
2 g(0) = Ig(0),

as desired. �

Lemma 2.4. If ` ∈ V ∗ and f ∈ S(V ) then

I`f (~) = ~I∂B−1`f
(~).
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Proof. We have

I`f (~) = ~
1
2 (`(x)f(~

1
2x), e−

1
2
B(x,x)) = ~

1
2 (f(~

1
2x), `(x)e−

1
2
B(x,x)) =

−~
1
2 (f(~

1
2x), ∂B−1`e

− 1
2
B(x,x)) = ~

1
2 (∂B−1`f(~

1
2x), e−

1
2
B(x,x)) =

~((∂B−1`f)(~
1
2x), e−

1
2
B(x,x)) = ~I∂B−1`f

(~).

This proves the lemma. �

Now we prove Theorem 2.2. If ~ > 0 then by direct differentiation
we get

I ′g(~) = 1
2
~−1IEg(~),

where E :=
∑d

j=1 e
∗
j∂ej is the Euler vector field on V . Thus by Lemma

2.4 we have

(2.3) I ′g(~) = I1
2

∆Bg
(~), ~ > 0.

So, using Lemma 2.3, it suffices to show that Ig ∈ C1[0,∞) (then
smoothness will follow by repeated application of (2.3)). To this end,
note that if C is a positive definite form on V then

I
e−

1
2C(x,x)(~) =

∫
V

e−
1
2

(B+~C)(x,x)dx = (2π)
d
2 det(B + ~C)−

1
2 ,

which is analytic, hence continuously differentiable on [0,∞). So sub-
tracting from g a multiple of such function, it suffices to prove that
Ig ∈ C1[0,∞) when g(0) = 0. In this case g is well known to be a
linear combination of functions of the form `f where f ∈ S(V ) and
` ∈ V ∗. So it suffices to check that Ig ∈ C1[0,∞) for g = `f . But then
by Lemma 2.4 I ′g(0) = I∂B−1`f

(0) = I 1
2

∆Bg
(0), as

1
2
∆Bg(0) = 1

2
∆B(`f)(0) =

∑
j

`(ej)∂B−1e∗j
f(0) = ∂B−1`f(0).

This completes the proof.

Exercise 2.5. Let Sm(V ) ⊂ Cm(V ) be the subspace of functions whose
derivatives of order ≤ m are rapidly decaying. Prove that the differ-
entiation formula of Theorem 2.2 holds for g ∈ S2(V ). Deduce that if
g ∈ S2n(V ) then I ∈ Cn[0,∞), and that if moreover g vanishes at 0 to

order 2n+ 1 then Ig(0) = ... = I
(n)
g (0) = 0.

18



2.3. The steepest descent formula. Let a < b be real numbers and
f, g : [a, b]→ R be continuous functions which are smooth on (a, b).

Theorem 2.6. (Steepest descent formula) Assume that f attains a
global minimum at a unique point c ∈ [a, b], such that a < c < b and
f ′′(c) > 0. Then one has

(2.4)

∫ b

a

g(x)e−
f(x)
~ dx = ~

1
2 e−

f(c)
~ I(~),

where I(~) extends to a smooth function on [0,∞) such that

I(0) =
√

2π
g(c)√
f ′′(c)

.

Proof. Without loss of generality we may put c = 0, f(c) = 0. Let
f ′′(c) = M . Making a change of variable, we may reduce to a situation
where f(x) = M

2
x2 when x is in some neighborhood U of 0. Let h be a

“bump” function - a smooth function supported in U which equals 1 in
a smaller neighborhood 0 ∈ U ′ ⊂ U . Write g = g1 + g2, where g1 = hg
and g2 = (1 − h)g. Let I be defined by equation (2.4), and I1, I2 be
defined by the same equation for g replaced by g1, g2, so I = I1 + I2.
Since f has a unique global minimum, we see by direct differentiation

that for all n, I
(n)
2 (~) is rapidly decaying as ~→ 0. Thus for g = g2 the

result is obvious, and our job is to prove it for g = g1. In other words,
we may assume without loss of generality that g = g1 and g2 = 0. We
extend g by zero to the whole real line.

Let us make a change of variables y := ~− 1
2x. Then we get

(2.5) I(~) =

∫ ∞
−∞

g(~
1
2y)e−

M
2
y2

dy.

Thus the result follows from (2.2) and Theorem 2.2. �

Remark 2.7. Theorem 2.6, in fact, provides an explicit formula for
the Taylor coefficients of I(~). Namely, as in the proof of Theorem 2.6,
assume that c = 0 and f(x) = 1

2
p(x)2 near 0, where

p′(0) =
√
f ′′(0) > 0.

Ignoring limits of integration (which, as we have seen, are irrelevant
for the asymptotic expansion of I(~)), we have4

I(~) = ~−
1
2

∫
g(x)e−

p(x)2

2~ dx ∼
∫ ∞
−∞

g̃(~
1
2y)e−

y2

2 dy

4Recall that for I ∈ C∞[0, ε) we write I(~) ∼
∑∞

n=0 an~n if for every N ≥ 0 we

have I(~) =
∑N−1

n=0 an~n +O(~N ) as ~→ 0.
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where

g̃(z) := g(p−1(z))(p−1)′(z) =
g(p−1(z))

p′(p−1(z))
.

By Theorem 2.2, the first n + 1 terms of the Taylor expansion of this
integral are given by the integral

IN(~) :=

∫ ∞
−∞

g̃N(~
1
2y)e−

y2

2 dy

where g̃N is the 2N -th Taylor polynomial of g̃ at 0. Thus if g̃(z) ∼∑∞
n=0 bnz

n then

I(~) ∼
∞∑
n=0

b2n~n
∫ ∞
−∞

y2ne−
y2

2 dy.

But, setting u = y2

2
, we have

(2.6)∫ ∞
−∞

y2ne−
y2

2 dy = 2n+ 1
2

∫ ∞
0

un−
1
2 e−udu = 2n+ 1

2 Γ(n+1
2
) = (2π)

1
2 (2n−1)!!,

where (2n− 1)!! :=
∏

1≤j≤n(2j − 1). Hence

I(~) ∼
∞∑
n=0

b2n2n+ 1
2 Γ(n+ 1

2
)~n.

2.4. Stationary phase formula. Theorem 2.6 has the following imag-
inary analog, called the stationary phase formula.

Theorem 2.8. (Stationary phase formula) Let f, g : [a, b] → R be
smooth functions. Assume that f has a unique critical point c ∈ [a, b],
such that a < c < b and f ′′(c) 6= 0, and g has vanishing derivatives of
all orders at a and b. Then∫ b

a

g(x)e
if(x)

~ dx = ~
1
2 e

if(c)
~ I(~),

where I(~) extends to a smooth function on [0,∞) such that

I(0) =
√

2πe±
πi
4

g(c)√
|f ′′(c)|

,

where ± is the sign of f ′′(c).5

Remark 2.9. It is important to assume that g has vanishing deriva-
tives of all orders at a and b. Otherwise we will get additional boundary
contributions.

5This is called the stationary phase formula because the main contribution comes

from the point where the phase f(x)
~ is stationary.
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Proof. The proof is analogous to the proof of the steepest descent for-
mula, but slightly more subtle, as we have to keep track of cancellations.
First we need the following very simple but important lemma which
allows us to do so.

Lemma 2.10. (Riemann lemma) (i) Let f : [a, b] → R be a smooth
function such that f ′(x) > 0 for all x ∈ [a, b] and g : [a, b] → R a
Cn-function such that

g(a) = ... = g(n−1)(a) = g(b) = ... = g(n−1)(b) = 0.

Let

I(~) :=

∫ b

a

g(x)e
if(x)

~ dx.

Then I(~) = O(~n), ~→ 0.
(ii) Suppose g is smooth on [a, b] and all derivatives of g at a and b

are zero. Then I extends (by setting I(0) := 0) to a smooth function
on [0,∞) whose all derivatives are rapidly decaying as ~→ 0.

Proof. (i) By making a change of variables we may assume without loss
of generality that f(x) = x. Then the proof is by induction in n. The
base case n = 0 is obvious. For n > 0 note that∫ b

a

g(x)e
ix
~ dx = i~

∫ b

a

g′(x)e
ix
~ dx

(integration by parts), which justifies the induction step.
(ii) follows from (i) by repeated differentiation. �

Now we proceed to prove the theorem. As in the proof of the steepest
descent formula, we may assume that c = 0 and f = M

2
x2 near 0 for

some M 6= 0, and write I as the sum I1 + I2. Moreover, by Lemma
2.10(ii)

I2(~) =

∫ b

a

g2(x)e
if(x)

~ dx

is rapidly decaying with all derivatives, so it suffices to prove the the-
orem for g = g1.

Again following the proof of the steepest descent formula, we have

(2.7) I(~) =

∫ ∞
−∞

g(~
1
2y)e

iM
2
y2

dy,

so as before the result follows from (2.2) and Theorem 2.2. �

Remark 2.11. Since computation of the asymptotic expansion of I(~)
is a purely algebraic procedure, the explicit formula for this expansion
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in the imaginary case is the same as in the real case (Remark 2.7) but
with ~ replaced by i~:

I(~) ∼
∞∑
n=0

b2n2n+ 1
2 Γ(n+ 1

2
)(i~)n.

2.5. Non-analyticity of I(~) and Borel summation. Even though
I(~) is smooth at ~ = 0, its Taylor series is usually only an asymptotic
expansion which diverges for any ~ 6= 0, so that this function is not
analytic at 0. To illustrate this, consider the integral∫ ∞

−∞
e−

x2+x4

2~ dx = ~
1
2 I(~),

where

(2.8) I(~) =

∫ ∞
−∞

e−
y2+~y4

2 dy.

Since this integral is divergent for any ~ < 0, we cannot conclude
its analyticity at ~ = 0, and it indeed fails to be so. Namely, as in
Remark 2.7, the asymptotic expansion of integral (2.8) is obtained by

expanding the exponential e−
1
2
~y4

into a Taylor series and integrating
termwise using (2.6):

I(~) ∼
∞∑
n=0

an~n,

where

an = (−1)n
∫ ∞
−∞

e−
y2

2
y4n

2nn!
dy =

(−1)n
2n+ 1

2 Γ(2n+ 1
2
)

n!
= (−1)n

√
2π

(4n− 1)!!

2nn!
.

It is clear that this sequence has super-exponential growth, so the ra-
dius of convergence of the series is zero.

Let us now discuss the question: to what extent does the asymp-
totic expansion of the function I(~) (which we can find using Feynman
diagrams as explained below) actually determine this function?

Suppose that

Ĩ(~) =
∑
n≥0

an~n

is a series with zero radius of convergence. In general, we cannot
uniquely determine a function I on [0, ε) whose expansion is given
by such a series: it always exists (check it!) but in general there is
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no canonical choice. However, assume that the exponential generating
function of an

g(~) =
∑
n≥0

an
~n

n!

is convergent in some neighborhood of 0, analytically continues to
[0,∞), and has at most exponential growth as ~ → ∞. In this case
there is a “canonical” way to construct a smooth function I on [0, ε)

with (asymptotic) Taylor expansion Ĩ, called the Borel summation of

Ĩ. Namely, the function I is defined by the formula

I(~) =

∫ ∞
0

g(~u)e−udu = ~−1

∫ ∞
0

g(u)e−
u
~ du,

i.e., I(~) = ~−1(Lg)(~−1), where L is the Laplace transform (note that
since g grows at most exponentially at infinity, this is well defined for
small enough ~ > 0). Note that

I(~) =

∫ ∞
−∞
|v|g(~v2)e−v

2

dv = ~−
1
2

∫ ∞
−∞

g∗(~
1
2v)e−v

2

dv,

where g∗(v) = |v|g(v2). Thus Exercise 2.5 implies that to compute the
asymptotic expansion of I, we may replace g by its Taylor polynomials
at 0. Hence the identity

∫∞
0
xne−xdx = n! implies that I has the Taylor

expansion Ĩ.
For example, consider the divergent series

Ĩ :=
∑
n≥0

(−1)nn!~n.

Then

g(~) =
∑
n≥0

(−1)n~n =
1

1 + ~
.

Hence, the Borel summation yields

I(~) =

∫ ∞
0

e−u

1 + ~u
du = ~−1e~

−1

E1(~−1)

where E1(x) :=
∫∞
x

e−u

u
du is the integral exponential.

Physicists expect that in physically interesting situations perturba-
tion expansions in quantum field theory are Borel summable, and the
actual answers are obtained from these expansions by Borel summa-
tion. The Borel summability of perturbation series has actually been
established in a few nontrivial examples of QFT.
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Exercise 2.12. Show that the function given by (2.8) equals the Borel
sum of its asymptotic expansion.

Hint. The function g(z) in this example is a special case of the hy-
pergeometric function 2F1 which does not express in elementary func-
tions. But it satisfies a hypergeometric differential equation. Write
down this equation and show that the Laplace transform turns it into
another second order linear differential equation, and that the function
I(~) given by (2.8) satisfies this equation.

2.6. Application of steepest descent. Let us give an application of
Theorem 2.6. Consider the integral

Γ(s+ 1) =

∫ ∞
0

tse−tdt, s > 0.

By doing a change of variable t = sx, we get

Γ(s+ 1)

ss+1
=

∫ ∞
0

xse−sxdx =

∫ ∞
0

e−s(x−log x)dx.

Thus, we can apply Theorem 2.6 for ~ = 1
s
, f(x) = x− log x, g(x) = 1

(of course, the interval [a, b] is now infinite, and the function f blows
up on the boundary, but one can easily see that the theorem is still
applicable, with the same proof). The function f(x) = x− log x has a
unique critical point on [0,∞), which is c = 1, and we have f ′′(c) = 1.
Then we get

(2.9) Γ(s+ 1) ∼ sse−s
√

2πs(1 + a1

s
+ a2

s2
+ · · · ).

This is the celebrated Stirling formula.
Moreover, we can compute the coefficients a1, a2, ... using Remark

2.7. Namely,

p(x) =
√

2(x− log(1 + x)) = x

√
1− 2x

3
+ x2

2
− . . . = x− x2

3
+ 7x3

36
+ ...

Thus
p−1(z) = z + z2

3
+ z3

36
+ ...,

hence
(p−1)′(z) = 1 + 2z

3
+ z2

12
+ ...,

So for instance by Remark 2.7 a1 = b2 = 1
12

.

Remark 2.13. Another way to compute this asymptotic expansion is
to use the Euler product formula for the Gamma function. Differenti-
ating the logarithm of this formula twice, we obtain (for z > 0):

(log Γ)′′(z) =
∞∑
n=0

1

(z + n)2
=
∞∑
n=0

∫ ∞
0

te−(z+n)tdt =

∫ ∞
0

te−zt

1− e−t
dt.
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Recall that the Bernoulli numbers are defined by the generating func-
tion ∑

n≥0

Bnt
n

n!
=

t

1− e−t
,

e.g. B0 = 1, B1 = 1
2
, B2n+1 = 0 for n ≥ 1. Thus we get for z →∞

(log Γ)′′(z) ∼
∑
n≥0

Bnz
−n−1.

Integrating, we get

(log Γ)′(z) ∼ log z + C1 −
∑
n≥1

Bn

n
z−n,

so integrating again and adding log z, we get

log Γ(z + 1) ∼ z log z − z + C1z +
1

2
log z + C2 +

∑
n≥2

Bn

n(n− 1)
z−n+1.

From Stirling’s formula we have C1 = 0, C2 = 1
2

log(2π), so in the end
we get

(2.10) (log Γ)′(z) ∼ log z −
∑
n≥1

Bn

n
z−n,

(2.11) log Γ(z+1) ∼ z log z+
1

2
log z+

1

2
log(2π)+

∑
n≥2

Bn

n(n− 1)
z−n+1.

So

1 + a1

s
+ a2

s2
+ · · · = exp(

∑
n≥2

Bn
n(n−1)

s−n+1).

In particular, since B2 = 1
6
, we get a1 = 1

12
.

Exercise 2.14. Calculate
∫ π

0
sinn xdx for nonnegative integers n using

integration by parts. Then apply steepest descent to this integral and
discover a formula for π (the so called Wallis formula).

Exercise 2.15. The Bessel function I0(a) is defined by the formula

I0(a) =
1

2π

∫ 2π

0

ea cos θdθ.

It is an even entire function with Taylor expansion

I0(a) =
∞∑
n=0

a2n

22nn!2
.
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Use the steepest descent/stationary phase formulas to find the asymp-
totic expansion of I0(a) as a → +∞ and a → i∞. Compute the first
two terms of the expansion (cf. Remark 2.22).

2.7. Multidimensional versions of steepest descent and sta-
tionary phase. Theorems 2.6,2.8 have multidimensional analogs. To
formulate them, let V be a real vector space of dimension d with a
fixed volume element dx and D ⊂ V be a compact region with smooth
boundary.6

Theorem 2.16. (Multidimensional steepest descent formula)
Let f, g : D → R be continuous functions which are smooth in the
interior of D. Assume that f achieves global minimum on D at a
unique point c, such that c is an interior point and f ′′(c) > 0. Then

(2.12)

∫
D

g(x)e−
f(x)
~ dx = ~

d
2 e−

f(c)
~ I(~),

where I(~) extends to a smooth function on [0,∞) such that

I(0) = (2π)
d
2

g(c)√
det f ′′(c)

.

Theorem 2.17. (Multidimensional stationary phase formula) Let
f, g : D → R be smooth functions. Assume that f has a unique critical
point c in D, such that c is an interior point and det f ′′(c) 6= 0, and g
has vanishing derivatives of all orders on ∂D. Then

(2.13)

∫
D

g(x)e
if(x)

~ dx = ~
d
2 e

if(c)
~ I(~),

where I(~) extends to a smooth function on [0,∞) such that

I(0) = (2π)
d
2 e

πiσ
4

g(c)√
| det f ′′(c)|

,

where σ is the signature of the symmetric bilinear form f ′′(c).

2.8. Morse lemma. For the proof of these theorems it is convenient
to use a fundamental result in multivariable calculus called the Morse
lemma. This lemma easily follows by induction in dimension from the
following theorem.

6The condition of smooth boundary is introduced for simplicity of exposition only
and is not essential. The same results and proofs apply with trivial modifications
to more general regions, e.g. those whose boundary is only piecewise smooth in an
appropriate sense.
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Theorem 2.18. (Separation of variables) Let f be a smooth function
on an open ball 0 ∈ B ⊂ Rd which has a non-degenerate critical point
at 0, and suppose f(0) = 0. Then there is a local coordinate system
near 0 (possibly defined in a smaller ball) in which

f(x1, ..., xn) = f(x1, ..., xd−1)± x2
d.

Proof. By making a linear change of variables, we can assume that the
quadratic part of f has the form Q(y) ± u2, where y := (x1, ..., xd−1),
u := xd. Consider the hypersurface S defined by the equation

∂uf(y, u) = 0.

The linear part of ∂uf(y, u) is ±2u, so by the implicit function theorem
there is a change of coordinates F near 0 (with dF (0) = 1) in which u
is replaced by v := ±1

2
∂uf(y, u) and y is kept unchanged; so u = g(y, v)

for some function g with (∂vg)(0, 0) 6= 0. Let

f∗(y, v) := f(y, u) = f(y, g(y, u)).

Then by the chain rule

∂vf∗(y, v) = ∂uf∗(y, v)∂u
∂v

= ∂uf(y, u)∂u
∂v

= ±2v∂vg(y, v).

Thus the hypersurface S in the new coordinates is defined by the equa-
tion v = 0. So we may assume without loss of generality that S is given
by the equation u = 0 to start with. Then (∂uf)(y, 0) = 0, so

f(y, u)− f(y, 0) = h(y, u)u2,

where h is a smooth function in B with h(0, 0) = ±1. By replacing u

with ũ :=
√
|h(y, u)|u and keeping y unchanged, we may assume that

h = ±1. Then

f(u, y) = f(0, y)± u2,

as claimed. �

Corollary 2.19. (Morse lemma) Let f be a smooth function on an
open ball 0 ∈ B ⊂ Rd which has a non-degenerate critical point at
0, and suppose f(0) = 0. Then there is a local coordinate system
(x1, ..., xd) near 0 (possibly defined in a smaller ball) in which

f = x2
1 + ...+ x2

m − x2
m+1 − ...− x2

d.

In other words, near a non-degenerate critical point a smooth function
is equivalent by a change of coordinates to its quadratic part.

Proof. As mentioned above, this follows easily from Theorem 2.18 by
induction in dimension. �
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Exercise 2.20. Let f be a smooth function on R2 which is a cubic
polynomial in x:

f(x, y) = a(y) + b(y)x+ c(y)x2 + d(y)x3.

Assume that a(0) = a′(0) = 0, b(0) = b′(0) = 0, a′′(0) = c(0) = 2.
Find explicitly local coordinates u = u(x, y), v = v(x, y) near 0 in which
f(x, y) = u2 + v2.

2.9. Proof of the multidimensional steepest descent and sta-
tionary phase formulas. The proofs of the multidimensional steep-
est descent and stationary phase formulas are parallel to the proofs of
their one-dimensional versions, using the Morse lemma. Namely, the
Morse lemma allows us to assume without loss of generality that f is
quadratic near the critical point. After this, the proof of the steepest
descent formula is identical to the 1-variable case. The same applies to
the stationary phase formula, using the following multivariable analog
of the Riemann lemma.

Lemma 2.21. Let f, g : D → R be smooth functions such that all
derivatives of g vanish on ∂D and df does not vanish anywhere on the
support of g. Then the function

I(~) :=

∫
D

g(x)e
if(x)

~ dx

extends to a smooth function on [0,∞) and has rapidly decaying deriva-
tives of all orders as ~→ 0.

Proof. Since df does not vanish on suppg, we can cover suppg by local
charts Ui in which f(x) is the last coordinate xd. By compactness
this cover can be chosen finite. By using a partition of unity {hi}
on suppg subordinate to this cover and replacing g with hig, we may
assume without loss of generality that g is supported on a single chart.
Then changing variables, we may also assume that f(x) = xd. Then
integrating out the variables x1, ..., xd−1, we reduce to the 1-dimensional
case covered by Lemma 2.10. �

Remark 2.22. It is clear from the proof of the stationary phase for-
mula that it extends to the case when f may have several critical points
but all of them are interior and non-degenerate. In this case the as-
ymptotic expansions coming from different critical points are simply
added together. The same applies to the steepest descent formula if
the global minimum is attained at several points all of which are interior
and non-degenerate.
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