
3. Feynman calculus

3.1. Wick’s theorem. Let V be a real vector space of dimension d
with volume element dx. Let S(x) be a smooth function on a compact
region D ⊂ V with smooth boundary which attains its minimum at
a unique point c ∈ D in the interior of D, and let g be any smooth
function on D. In the previous section we proved the steepest descent
formula which implies that the function

I(~) = ~−
d
2 e

S(c)
~

∫
D

g(x)e−
S(x)
~ dx

admits an asymptotic power series expansion in ~:

(3.1) I(~) = a0 + a1~ + · · ·+ am~m + · · ·

Our main question now will be: how to compute the coefficients ai?
Our proof of the steepest descent formula shows that although the

problem of computing I(~) is transcendental, the problem of comput-
ing the coefficients ai is, in fact, purely algebraic, and involves only
differentiation of the functions S and g at the point c. Indeed, recall-
ing the proof of equation (3.1), we see that the calculation of ai reduces
to calculation of integrals of the form∫

V

P (x)e−
B(x,x)

2 dx,

where P is a polynomial and B is a positive definite bilinear form
(in fact, B(v, u) = (∂v∂uS)(c)). But such integrals can be exactly
evaluated. Namely, it is sufficient to consider the case when P is a
product of linear functions, in which case the answer is given by the
following elementary formula, known to physicists as Wick’s theorem.

For a positive integer k, consider the set {1, . . . , 2k}. By a matching
σ on this set we will mean its partition into k disjoint two-element
subsets (pairs). A matching can be visualized by drawing 2k points
and connecting two points with an edge if they belong to the same pair
(see Fig. 1). This will give k edges which are not connected to each
other.

Let us denote the set of matchings on a set T by Π(T ) and the set

Π({1, . . . , 2k}) by Πk. It is clear that |Πk| = (2k)!
2k·k!

= (2k− 1)!!. For any
σ ∈ Πk, we can think of σ as a permutation of {1, . . . , 2k}, such that
σ2 = 1 and σ has no fixed points. Namely, σ maps any element i to
the second element σ(i) of the pair containing i.
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Figure 1. Matchings of the set {1, 2, 3, 4}

Theorem 3.1. (Wick’s theorem) Let B−1 denote the inverse form to
B on V ∗, and `1, . . . , `N ∈ V ∗. Then, if N is even, we have∫

V

`1(x) . . . `N(x)e−
B(x,x)

2 dx =
(2π)

d
2

√
detB

∑
σ∈ΠN/2

∏
i∈{1,...,N}/σ

B−1(`i, `σ(i))

If N is odd, the integral is zero.

Proof. If N is odd, the statement is obvious, because the integrand is
an odd function. So consider the even case N = 2k. Since both sides
of the equation are symmetric polylinear forms in `1, . . . , `N , it suffices
to prove the result when `1 = · · · = `N = `. Further, it is clear that the
formula in question is stable under linear changes of variable, so we can
choose a coordinate system in such a way that B(x, x) = x2

1 + · · ·+ x2
d,

and `(x) = x1. Therefore, it is sufficient to assume that d = 1 and
`(x) = x. In this case, the theorem says that∫ ∞

−∞
x2ke−

x2

2 dx = (2π)
1
2 (2k − 1)!!,

which is formula (2.6). �

Example 3.2. We have∫
V

`1(x)`2(x)e−
B(x,x)

2 dx =
(2π)

d
2

√
detB

B−1(`1, `2),

∫
V

`1(x)`2(x)`3(x)`4(x)e
−B(x,x)

2 dx =

(2π)
d
2

√
detB

(B−1(`1, `2)B
−1(`3, `4) +B−1(`1, `3)B

−1(`2, `4) +B−1(`1, `4)B
−1(`2, `3)).
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Wick’s theorem shows that the problem of computing ai is of combi-
natorial nature. In fact, the central role in this computation is played
by certain finite graphs, which are called Feynman diagrams. They are
the main subject of the remainder of this section.

3.2. Feynman diagrams and Feynman’s theorem. We come back
to the problem of computing the coefficients ai. Since each particular
ai depends only on a finite number of derivatives of g at c, it suffices
to assume that g is a polynomial, or, more specifically, a product of
linear functions: g = `1 . . . `N , `i ∈ V ∗. Thus, it suffices to be able to
compute the series expansion of the integral

(3.2) 〈`1 . . . `N〉 := ~−
d
2 e

S(c)
~

∫
D

`1(x) . . . `N(x)e−
S(x)
~ dx.

Without loss of generality we may assume that c = 0 and S(c) = 0.
Then the (asymptotic) Taylor expansion of S at c is

S(x) =
B(x, x)

2
−
∑
i≥3

Bi(x, . . . , x)

i!
,

where Bi := dif(0). Therefore, regarding the left hand side of (3.2) as

a power series in ~ and making a change of variable x 7→ ~ 1
2x (like in

the last section), we get

〈`1 . . . `N〉 = ~
N
2

∫
V

`1(x) . . . `N(x)e−
B(x,x)

2
+
∑
i≥3 ~

i
2−1 Bi(x,...,x)

i! dx.

Note that this is only an identity of asymptotic expansions in ~, as
we ignored the rapidly decaying error which comes from replacing
the region D by the whole space. But it implies in particular that

〈`1 . . . `N〉 = O(~dN2 e) as ~→ 0 (as the expansion contains only integer
powers of ~).

The theorem below, due to Feynman, gives the value of this integral
in terms of Feynman diagrams. This theorem is easy to prove but is
central in quantum field theory, and will be one of our main theorems.
Before formulating Feynman’s theorem, let us introduce some notation.

Let G≥3(N) be the set of isomorphism classes of graphs with N
1-valent “external” vertices, labeled by 1, . . . , N , and a finite number
of unlabeled “internal” vertices, of any valency ≥ 3. Note that here and
below graphs are allowed to have multiple edges between two vertices
and loops from a vertex to itself (see Fig. 2).

For each graph Γ ∈ G≥3(N), we define the Feynman amplitude of Γ
as follows.

1. Put the covector `j at the j-th external vertex.
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2. Put the tensor Bi at each i-valent internal vertex.
3. Take the contraction of the tensors along edges of Γ, using the

bilinear form B−1. This will produce a number, called the (Feynman)
amplitude of Γ and denoted FΓ(`1, . . . , `N).

Remark 3.3. If Γ is not connected, then FΓ is defined to be the prod-
uct of numbers obtained from the connected components. Also, the
amplitude of the empty diagram is defined to be 1.

Example 3.4. Let

B3 :=
∑
i

b13
i ⊗ b23

i ⊗ b33
i , B4 :=

∑
j

b14
j ⊗ b24

j ⊗ b34
j ⊗ b44

j ,

where bjki ∈ V ∗. Then for the graph Γ3 in Fig. 2 the amplitude equals

FΓ3(`1, `2) =∑
i

B−1(`1, b
13
i )B−1(b23

i , b
33
i ) ·

∑
i,j

B−1(b13
i , b

14
j )B−1(b23

i , b
24
j )B−1(b33

i , b
34
j )B−1(b44

j , `2).

Theorem 3.5. (Feynman) One has

(3.3) 〈`1 . . . `N〉 =
(2π)

d
2

√
detB

∑
Γ∈G≥3(N)

~b(Γ)

|Aut(Γ)|
FΓ(`1, . . . , `N),

where b(Γ) is the number of edges minus the number of internal vertices
of Γ.

N = 0
Γ0 = ∅

N = 0

Γ1

N = 1

Γ2

1
N = 2

Γ3

1 2

1 2
N = 2

Γ4

Figure 2. Examples of elements of G≥3(N).
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Here Aut(Γ) denotes the group of automorphisms of Γ, and by an au-
tomorphism of Γ we mean a permutation of vertices and edges (possibly
flipping the self-loops) which fixes each external vertex and preserves
the graph structure, see Fig. 3. Thus there can exist nontrivial auto-
morphisms which act trivially on the set of vertices and even ones also
acting trivially on the set of edges. For example, there is an automor-
phism of Γ4 that flips the upper and lower arc, and an automorphism
of Γ2 that flips the self-loop.

1

Figure 3. An automorphism of a graph

Remark 3.6. 1. Note that this sum is infinite, but ~-adically conver-
gent.

2. Theorem 3.5 is a generalization of Wick’s theorem: the latter

is obtained if S(x) = B(x,x)
2

. Indeed, in this case graphs which give
nonzero amplitudes do not have internal vertices, and thus reduce to
graphs corresponding to matchings σ.

Let us now make some comments about the terminology. In quantum
field theory, the function 〈`1 . . . `N〉 is called the N-point correlation
function, and graphs Γ are called Feynman diagrams. The form B−1

which is put on the edges is called the propagator.. The cubic and
higher terms Bi

i!
in the expansion of the function S are called interaction

terms, since such terms (in the action functional) describe interaction
between particles. The situation in which S is quadratic (i.e., there
is no interaction) is called a free theory; i.e. for the free theory the
correlation functions are determined by Wick’s formula.

Remark 3.7. Sometimes it is convenient to consider normalized cor-
relation functions

〈`1 . . . `N〉norm :=
〈`1 . . . `N〉
〈∅〉
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where 〈∅〉 denotes the integral without insertions. Feynman’s theorem
implies that they are given by the formula

〈`1 . . . `N〉norm =
∑

Γ∈G∗≥3(N)

~b(Γ)

|Aut(Γ)|
FΓ(`1, . . . , `N),

where G∗≥3(N) is the subset of all graphs in G≥3(N) which have no
components without external vertices.

3.3. A weighted version of Feynman’s theorem. Before prov-
ing Theorem 3.5, we would like to slightly modify and generalize it.
Namely, in quantum field theory it is often useful to consider an in-
teracting theory as a deformation of a free theory. This means that

S(x) = B(x,x)
2

+ S̃(x), where S̃(x) is a perturbation

S̃(x) := −
∑
i≥0

gi
Bi(x, . . . , x)

i!

in which gr, r ≥ 0 are (formal) parameters. One benefit of these pa-
rameters is that they will allow us to group the amplitudes of Feynman
diagrams in the sum (3.3) by the numbers of vertices of each valency.
Namely, consider the partition function

Z = ~−
d
2

∫
V

e−
S(x)
~ dx

as a series in gi. Let n = (n0, n1, n2, . . .) be a sequence of nonnegative
integers, almost all zero. LetG(n) denote the set of isomorphism classes
of graphs with n0 0-valent vertices, n1 1-valent vertices, n2 2-valent
vertices, etc. (thus, now we are considering graphs without external
vertices). For Γ ∈ G(n), let FΓ is the amplitude of Γ defined as before.
Thus

FΓ =
∏
i

gnii · FΓ,

where FΓ is the Feynman amplitude computed without the factors gj.

Theorem 3.8. One has

Z =
(2π)

d
2

√
detB

∑
n

∑
Γ∈G(n)

~b(Γ)

|Aut(Γ)|
FΓ =

(2π)
d
2

√
detB

∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ∈G(n)

FΓ

|Aut(Γ)|
,

where b(Γ) =
∑

i ni(
i
2
− 1) is the number of edges minus the number of

vertices of Γ.
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Note that we may view Z as an element of the algebra

C[g0~−
3
2 , g1~−1, g2~−

1
2 ; gj, j ≥ 3][[~

1
2 ]],

i.e., it can be specialized to numerical values of

g0~−
3
2 , g1~−1, g2~−

1
2 , g3, g4, ...,

giving an element of C[[~ 1
2 ]]. Also Z can be specialized to ~ = 1, giving

an element of C[[gj, j ≥ 0]], and the theorem is, in fact, equivalent to
this specialization. Still we choose to keep ~ to be able to take the
classical limit ~→ 0.

We will prove Theorem 3.8 in the next subsection. Meanwhile, let
us show that Theorem 3.5 is in fact a special case of Theorem 3.8.
Indeed, because of symmetry of the correlation functions with respect
to `1, . . . , `N , it is sufficient to consider the case `1 = · · · = `N = `.
In this case, denote the correlation function 〈`N〉 (expectation value of
`N). Clearly, to compute 〈`N〉 for all N , it is sufficient to compute the
generating function

〈e`〉 = ~−
d
2

∫
V

e`(x)−S(x)
~ dx :=

∞∑
N=0

〈`N〉
N !

,

which up to scaling and multiplication of ` by i is the Fourier transform

of the Feynman density e−
S(x)
~ dx. But this expectation value is exactly

the one given by Theorem 3.8 for gi = 1, i ≥ 3, g0 = g2 = 0, g1 = ~,
B1 = `, B0 = 0, B2 = 0. Thus, Theorem 3.8 implies Theorem 3.5
(the factor N ! in the denominator is accounted for by the fact that
in Theorem 3.8 we consider unlabeled, rather than labeled, 1-valent
vertices).

3.4. Proof of Feynman’s theorem. Now we will prove Theorem 3.8.
Let us make a change of variable y = ~− 1

2x. Expanding the exponential
in a Taylor series, we obtain

Z =
∑
n

Zn,

where

Zn =

∫
V

e−
B(y,y)

2

∏
i

gnii
i!nini!

(~
i
2
−1Bi(y, . . . , y))nidy.

Writing Bi as a sum of products of linear functions, and using Wick’s
theorem, we find that the value of the integral for each n can be ex-
pressed combinatorially as follows.

1. Attach to each factor Bi a “flower” — a vertex with i outgoing
edges (see Fig. 4).
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0-valent flower

1-valent flower

3-valent flower

Figure 4.

2. Consider the set Tn of ends of these outgoing edges (see Fig. 5),
and for any matching σ of this set, consider the corresponding contrac-
tion of the tensors Bi using the form B−1. This will produce a scalar
F(σ).

Figure 5. The set Tn for n = (0, 0, 0, 2, 1, 0, 0, . . .) (the
set of white circles)
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3. The integral Zn is given by

(3.4) Zn =
(2π)

d
2

√
detB

∏
i

gnii
i!nini!

~ni(
i
2
−1)

∑
σ∈Π(Tn)

F(σ).

Now, recall that matchings on a set can be visualized by drawing
its elements as points and connecting them with edges. If we do this
with the set Tn, all ends of outgoing edges will become connected with
each other in some way, i.e. we will obtain a certain (unoriented) graph
Γ = Γσ (see Fig. 6). Moreover, it is easy to see that the scalar F(σ) is
nothing but the amplitude FΓ.

σ:

Figure 6. A matching σ of Tn and the corresponding
graph Γ.

It is clear that any graph Γ with ni i-valent vertices for each i can
be obtained in this way. However, the same graph can be obtained in
many different ways, so if we want to collect identical terms in the sum
over σ, and turn it into a sum over Γ, we must find the number of σ
which yield a given Γ.

For this purpose, we will consider the group Gn of permutations of
Tn, which preserves “flowers” (i.e. endpoints of any two edges outgoing
from the same flower end up again in the same flower). This group
involves

1) permutations of “flowers” with a given valency;
2) permutation of the i edges inside each i-valent “flower”.

37



More precisely, the group Gn is the semidirect product of symmetric
groups

Gn =
∏
i

(Sni n Snii ).

Note that |Gn| =
∏

i i!
nini!, which is the product of the numbers in the

denominator of formula (3.4).
The group Gn acts on the set Π(Tn) of all matchings σ of Tn. More-

over, it acts transitively on the set ΠΓ(Tn) of matchings of Tn which
yield a given graph Γ. Furthermore, it is easy to see that the stabilizer
of a given matching is Aut(Γ). Thus, the number of matchings giving
Γ is

NΓ =

∏
i i!

nini!

|Aut(Γ)|
.

Hence, ∑
σ∈Π(Tn)

F(σ) =
∑

Γ

∏
i i!

nini!

|Aut(Γ)|
FΓ.

Finally, note that the exponent of ~ in equation (3.4) is
∑

i ni(
i
2
− 1),

which is the number of edges of Γ minus the number of vertices, i.e.
b(Γ). Substituting this into (3.4), we get the result.

Example 3.9. Let d = 1, V = R, gi = g, Bi = zi for all i ≥ 0 (where
z is a formal variable), ~ = 1. Then we find the asymptotic expansion

1√
2π

∫ ∞
−∞

e−
x2

2
+gezx =

∑
n≥0

gn
∑

Γ∈G(n,k)

z2k

|Aut(Γ)|
,

where G(n, k) is the set of isomorphism classes of graphs with n vertices
and k edges.7 Expanding the left hand side, we get

∑
k

∑
Γ∈G(n,k)

z2k

|Aut(Γ)|
=
e
z2n2

2

n!
,

and hence ∑
Γ∈G(n,k)

1

|Aut(Γ)|
=

n2k

2kk!n!
.

Exercise 3.10. Check this by direct combinatorics.

7This integral converges for g < 0, z ∈ R, but this is not important for us here,
since we consider the integral formally.

38



3.5. Sum over connected diagrams. Now we will show that the
logarithm of the partition function Z is also given by summation over
diagrams, but with only connected diagrams taken into account. This
significantly simplifies the analysis of Z in the first few orders of per-
turbation theory, since the number of connected diagrams with a given
number of vertices and edges is significantly smaller than the number
of all diagrams.

Theorem 3.11. Let Z0 = (2π)
d
2√

detB
. Then one has

log
Z

Z0

=
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ∈Gc(n)

FΓ

|Aut(Γ)|

where Gc(n) is the set of connected graphs in G(n).8

Proof. For any graphs Γ1, Γ2, let Γ1Γ2 stand for the disjoint union of
Γ1 and Γ2, and for any graph Γ let Γn denote the disjoint union of n
copies of Γ. Then every graph can be uniquely written as Γk1

1 . . .Γkll ,
where Γj are connected non-isomorphic graphs. Moreover, it is clear
that FΓ1Γ2 = FΓ1FΓ2 , b(Γ1Γ2) = b(Γ1) + b(Γ2), and

|Aut(Γk1
1 . . .Γkll )| =

∏
j

|Aut(Γj)|kjkj!.

Thus, exponentiating the equation of Theorem 3.11, and using the
above facts together with the Taylor series for the function ex, we
arrive at Theorem 3.8. As Theorem 3.8 has been proved, so is Theorem
3.11 �

3.6. The loop expansion. Note that since summation in Theorem
3.11 is over connected Feynman diagrams, the number b(Γ) is the num-
ber of loops in Γ minus 1. In particular, the lowest coefficient in ~ is
that of ~−1, and it is the sum over all trees; the next coefficient is to ~0,
and it is the sum over all diagrams with one loop (cycle); the next co-
efficient to ~ is the sum over two-loop diagrams, and so on. Therefore,
physicists refer to the expansion of Theorem 3.11 as the loop expansion.

Let us study the two most singular terms in this expansion (with
respect to ~), i.e. the terms given by the sum over trees and 1-loop
graphs.

Let x0 be the critical point of the function S. It exists and is unique,
since gi are assumed to be formal parameters. Let G(j)(n) denote the

8We define a connected graph as a graph with exactly one connected compo-
nent. So the empty graph, which has zero connected components, is not considered
connected.
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set of classes of graphs in Gc(n) with j loops. Let(
log

Z

Z0

)
j

:=
∑
n

∏
i

gnii
∑

Γ∈G(j)(n)

FΓ

|Aut(Γ)|
,

so that

log
Z

Z0

=
∞∑
j=0

(
log

Z

Z0

)
j

~j−1.

Theorem 3.12.

(3.5)

(
log

Z

Z0

)
0

= −S(x0),

and

(3.6)

(
log

Z

Z0

)
1

=
1

2
log

detB

detS ′′(x0)
.

Proof. First note that the statement is purely combinatorial. This
means, in particular, that it is sufficient to check that the statement
yields the correct asymptotic expansion of the right hand sides of equa-
tions (3.5),(3.6) in the case when S is a polynomial with real coeffi-

cients of the form B(x,x)
2
−
∑N

i=0 gi
Bi(x,...,x)

i!
and ~ > 0. To do so, let

Z := ~− d2
∫
B
e−

S(x)
~ dx, where B is a ball centered at 0. For sufficiently

small gi, the function S has a unique global minimum point x0 in B,
which is non-degenerate. Thus, by the steepest descent formula, we
have

Z

Z0

= e−
S(x0)

~ I(~),

where I(~) ∼
√

detB
detS′′(x0)

(1 + a1~+ a2~2 + · · · ) (asymptotically). Thus,

log
Z

Z0

= −S(x0)~−1 +
1

2
log

detB

detS ′′(x0)
+O(~).

This implies the result. �

Physicists call the expression (log Z
Z0

)0 the classical (or tree) approx-

imation to the quantum mechanical quantity ~ log Z
Z0

, and the sum

(log Z
Z0

)0 + ~(log Z
Z0

)1 the one-loop approximation. Similarly one de-
fines higher loop approximations. Note that the classical approxima-
tion is obtained by finding the critical point and value of the classical
action S(x), which in the classical mechanics and field theory situation
corresponds to solving the classical equations of motion.
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3.7. Nonlinear equations and trees. As we have noted, Theorem
3.12 does not involve integrals and is purely combinatorial. Therefore,
there should exist a purely combinatorial proof of this theorem. Such
a proof indeed exists. Here we will give a combinatorial proof of the
first statement of the Theorem (formula (3.5)).

Consider the equation S ′(x) = 0, defining the critical point x0. This
equation can be written as x = β(x), where

β(x) :=
∑
i≥1

gi
B−1Bi(x, . . . , x,−)

(i− 1)!
,

where B−1 : V ∗ → V is the operator corresponding to the form B−1.
In the sense of power series norm, β is a contracting mapping. Thus,

x0 = limN→∞ β
N(x), for any initial vector, for example 0 ∈ V . In

other words, we will obtain x0 if we keep substituting the series β(x)
into itself. This leads to summation over trees (explain why!). More
precisely, we get the following expression for x0:

x0 =
∑
n

∏
i

gnii
∑

Γ∈G(0)(n,1)

FΓ

|Aut(Γ)|
,

where G(0)(n, 1) is the set of trees with one external vertex and ni in-

ternal vertices of degree i. Now, since S(x) = B(x,x)
2
−
∑

i gi
Bi(x,...,x)

i!
, the

expression −S(x0) equals the sum of expressions
∏

i g
ni
i

FΓ

|Aut(Γ)| over all

trees (without external vertices). Indeed, the term B(x0,x0)
2

corresponds
to gluing two trees with external vertices (identifying the two external
vertices, so that they disappear); so it corresponds to summing over
trees with a marked edge, i.e. counting each tree as many times as

it has edges. On the other hand, the term gi
Bi(x0,...,x0)

i!
corresponds to

gluing i trees with external vertices together at these vertices (making

a tree with a marked vertex). So
∑

i gi
Bi(x0,...,x0)

i!
corresponds to sum-

ming over trees with a marked vertex, i.e. counting each tree as many
times as it has vertices. But the number of vertices of a tree exceeds
the number of edges by 1. Thus, the difference −S(x0) of the above
two contributions corresponds to summing over trees, counting each
exactly once. This implies formula (3.5).

3.8. The case d = 1. In the case d = 1 we can compute the tree sum
−S(x0) even more explicitly. Namely, let

S(x) :=
x2

2
− gh(x)
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where h(x) =
∑

n≥0 cnx
n with c1 6= 0. Then x0 is the solution of

the equation x = gh′(x), i.e., x0 = f(g) where x = f(y) is the in-
verse function to y = x

h′(x)
. So the tree approximation takes the form

−S(x0) = F (g) where

F (g) = −f(g)2

2
+ gh(f(g)).

Thus

F ′(g) = −f(g)f ′(g) + h(f(g)) + gh′(f(g))f ′(g).

But h′(f(g)) = f(g)
g

, so the first and third summands cancel and we get

F ′(g) = h(f(g)),

hence

(3.7) − S(x0) =

∫ g

0

h(f(a))da.

3.9. Counting trees and Cayley’s theorem. In this section we will
apply Theorem 3.12 to tree counting problems, in particular will prove
a classical theorem due to Cayley that the number of labeled trees with
n vertices is nn−2.

We consider essentially the same situation as we considered above in
Example 3.9: d = 1, Bi = 1, gi = g. Thus, we have S(x) = x2

2
− gex.

By Theorem 3.12, we have∑
n≥0

gn
∑

Γ∈T (n)

1

|Aut(Γ)|
= −S(x0),

where T (n) is the set of isomorphism classes of trees with n vertices,
and x0 is the root of the equation S ′(x) = 0, i.e. x = gex.

In other words, let x = f(y) be the function inverse to the function
y = xe−x near x = 0, then x0 = f(g). The function f(y) is related to
(the principal branch of) the Lambert function W (y) by the formula
f(y) = −W (−y). By (3.7)

−S(x0) =

∫ g

0

ef(a)da =

∫ g

0

f(a)

a
da.

Thus it remains to find the Taylor expansion of f . This expansion
is given by the following classical result.

Proposition 3.13. One has

f(g) =
∑
n≥1

nn−2

(n− 1)!
gn.
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Proof. Let f(g) =
∑

n≥1 ang
n. Then

an =
1

2πi

∮
f(g)

gn+1
dg =

1

2πi

∮
x

(xe−x)n+1
d(xe−x) =

1

2πi

∮
enx

1− x
xn

dx =
nn−1

(n− 1)!
− nn−2

(n− 2)!
=

nn−2

(n− 1)!
.

�

So we get

−S(x0) =

∫ g

0

f(a)

a
da =

∑
n≥1

nn−2

n!
gn.

This shows that ∑
Γ∈T (n)

1

|Aut(Γ)|
=
nn−2

n!
.

But each isomorphism class of unlabeled trees with n vertices has
n!

|Aut(Γ)| nonisomorphic labelings. Thus we obtain

Corollary 3.14. (A. Cayley) The number of labeled trees with n ver-
tices is nn−2.

3.10. Counting trees with conditions. In a similar way we can
count labeled trees with conditions on vertices. For example, let us
compute the number of labeled trivalent trees with m vertices (i.e.
trees that have only 1-valent and 3-valent vertices). Clearly, m = 2k,
otherwise there is no such trees. The relevant action functional is

S(x) = x2

2
− g(x+ x3

6
).

Then the critical point x0 is obtained from the equation

x = g(1 + x2

2
),

which yields

x0 =
1−

√
1− 2g2

g
.

Thus, by (3.7) the tree sum equals

−S(x0) =

∫ g

0

(
1−
√

1−2a2

a
+ (1−

√
1−2a2)3

6a3

)
da =

2

3

∫ g

0

1−(1+a2)
√

1−2a2

a3 da =
(1− 2g2)

3
2 − (1− 3g2)

3g2
.

Expanding this in a Taylor series, we find

−S(x0) =
∞∑
n=1

1 · 3 · · · · · (2n− 3)

(n+ 1)!
g2n.
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Hence, we get

Corollary 3.15. The number Nk of trivalent labeled trees with 2n ver-

tices is (2k − 3)!! (2k)!
(k+1)!

.

For example, N1 = 1 (a single edge), N2 = 4 (a single tree with 4!
labelings modulo a group of order 6), N3 = 90 (a single tree with 6!
labelings modulo a group of order 8), etc.

3.11. Counting oriented trees. Feynman calculus can be used to
count not only non-oriented, but also oriented graphs. For example,
suppose we want to count labeled oriented trees, whose vertices are
either sources or sinks (see Fig. 7). In this case, it is easy to see (check
it!) that the relevant integration problem is in two dimensions, with
the action S = xy− bex− aey (the form xy is not positive definite, but
this is immaterial since our computations are purely formal). So the
critical point is found from the equations

xe−y = a, ye−x = b.

Like before, look for a solution (x, y) = (x0, y0) in the form

x = a+
∑

p≥1,q≥1

cpqa
pbq, y = b+

∑
p≥1,q≥1

dpqa
pbq.

A calculation with residues similar to the one we did for unoriented
trees yields

cpq =
1

(2πi)2

∮ ∮
x

ap+1bq+1
da ∧ db =

1

(2πi)2

∮ ∮
eqx+py

xpyq+1
(1− xy)dx ∧ dy =

qp−1pq−1

(p− 1)!q!
.

1

2

3

4

5

6

Figure 7. A labeled oriented tree with 3 sources and 3 sinks.
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Similarly, dpq = qp−1pq−1

p!(q−1)!
. Now, similarly to the unoriented case, we find

that −a∂aS(x, y) = x, −b∂bS(x, y) = y, so

−S(x, y) = b+

∫ a

0

x

u
du = a+ b+

∑
p,q≥1

pq−1qp−1

p!q!
apbq

This implies that the number of labeled trees with p sources and q sinks

is pq−1qp−1 (p+q)!
p!q!

. In particular, if we specify which vertices are sources

and which are sinks, the number of labeled trees is pq−1qp−1.

Exercise 3.16. Do this calculation in detail.

3.12. The matrix-tree theorem. These calculations can be general-
ized to compute the number of colored labeled trees. For this we first
need to define the Kirchhoff polynomial Km(u). Namely, for a collec-
tion of variables u := (uik), 1 ≤ i 6= k ≤ m, uik = uki consider the
quadratic form

U(y) :=
∑

1≤i<k≤m

uik(yi − yk)2.

Generically it has a 1-dimensional kernel spanned by 1 = (1, ..., 1), so
it is nondegenerate on the subspace defined by the equation

∑
i yi = 0.

This subspace carries a volume form ω0(v1, ..., vm−1) := ω(v1, ..., vm−1,1),
where ω is the standard volume form on Rm, and with respect to this
form we have

Km(u) := detU = det(δi`
∑
k 6=`

uk` − ui`)(j)

for any 1 ≤ j ≤ m, where the subscript (j) means that the j-th row
and column are removed. The polynomial Km is called the Kirchhoff
polynomial. For instance, K2 = u12, K3 = u12u13 +u13u23 +u12u23, etc.

Now let p = (p1, ..., pm) be a m-tuple of positive integers and r =
(rij, 1 ≤ i ≤ j ≤ m) be a collection of nonnegative integers with
|r| = |p| − 1, where |r| :=

∑
i≤j rij, |p| :=

∑
k pk. Suppose vertices of

the tree are given colors 1, ...,m, and we want to compute the number
N(p, r) of labeled trees with the first p1 vertices colored with 1, the
next p2 with 2,..., the last pm with m, and rij edges going between
vertices of color i and vertices of color j.

It suffices to compute the polynomial

Qp(z) :=
∑

r:|r|=|p|−1

N(p, r)
∏
i≤j

z
rij
ij .
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Theorem 3.17. We have

Qp(z) = (p1...pm)−1K(pkzk`p`, k 6= `)
∏
`

(
∑
k

pkzk`)
p`−1.

Note that for m = 1 and z = 1 this recovers Cayley’s theorem, while

for m = 2 and z =

(
0 1
1 0

)
it recovers our count of oriented trees.

Proof. We attach to each color j a real variable xj. Then the corre-
sponding action is

S(x, y) =
1

2
xTBx−

m∑
j=1

aje
xj ,

where B = (bij) is inverse to the matrix z := (zij) with zij = zji. Then
by Theorem 3.12, Qp(z) is the coefficient to

∏
k a

pk
k in −S(x), where x

is the critical point of S.
The equation for the critical point of S is∑

i

xibije
−xj = aj.

Let Xj :=
∑

i xibij, then xi =
∑

j zijXj, ai = Xie
−xi , and

−S(x) =

∫
Xj

daj
aj

for all j. In other words, the coefficient to
∏

k a
pk
k in −S(x) equals

the coefficient to the same monomial in Xj(z, a) divided by pj. Thus,
denoting by DT (z) the principal minor of z corresponding to a subset
T ⊂ {1, ...,m}, we get

Qp(z) =
p−1
j

(2πi)m

∮
Xj(
∏
k

a−pk−1
k )da =

p−1
j

(2πi)m

∮
Xj(
∏
k

(Xke
−xk)−pk−1)d(X1e

−x1) ∧ ... ∧ d(Xme
−xm) =

p−1
j

(2πi)m

∮ ∑
T⊂{1,...,m}

(−1)|T |DT (z)Xj(
∏
`/∈T

X−1
` )(

∏
`

X−p`` )e
∑
k,` pkzk`X`dX1∧...∧dXm

= p−1
j

∑
T⊂{1,...,m}

(−1)|T |
pj − 1 + δjT c∑

k pkzkj
DT (z)

∏
`

(
∑

k pkzk`)
p`−δ`T

(p` − δ`T )!
=

p−1
j

(
pj − 1∑
k pkzkj

det(δi`
∑
k

pkzk` − zi`p`) + det(δi`
∑
k

pkzk` − zi`p`)(j)

)∏
`

(
∑
k pkzk`)

p`−1

p`!
,
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where δ`T = 1 if ` ∈ T and 0 otherwise. The first determinant is zero,
so we get

Qp(z) = (p1...pm)−1 det(δi`
∑
k

pkzk`p` − pizi`p`)(j)

∏
`

(
∑

k pkzk`)
p`−1

p`!
.

This implies the theorem. �

Theorem 3.17 is a weighted version of Kirchhoff’s matrix-tree theo-
rem, which is a generalization of Cayley’s theorem. More precisely, take
z = AΓ to be the adjacency matrix of a graph Γ (without self-loops),
m the number of vertices of Γ, and pi = 1 for all i. Then Qp(z) = NΓ

is the number of spanning trees of Γ, and Theorem 3.17 says that

NΓ = detU,

where U is the quadratic form

U(y) =
∑
i<j

(AΓ)ij(yi − yj)2 = (∆Γy,y),

where ∆Γ = DΓ − AΓ is the Laplace operator of Γ (DΓ being the
diagonal matrix of vertex degrees). Thus we get

Corollary 3.18. (The matrix-tree theorem)

NΓ =
1

m
λ1...λm−1,

where λi are the non-zero eigenvalues of ∆Γ.

Cayley’s theorem is obtained from this result when Γ is a complete
graph, in which case λi = m for all i, so we get NΓ = mm−2.

3.13. 1-particle irreducible diagrams and the effective action.
Let Z = ZS be the partition function corresponding to the action S. In
the previous subsections we have seen that the “classical” (or “tree”)
part (log ZS

Z0
)0 of the quantity ~ log ZS

Z0
is quite elementary to compute –

it is just minus the critical value of the action S(x). Thus, if we could
find a new “effective” action Seff (a “deformation” of S) such that

~−1(log
ZSeff

Z0
)0 = log ZS

Z0

(i.e. the classical answer for the effective action is the quantum answer
for the original one), then we can consider the quantum theory for the
action S solved. In other words, the problem of solving the quantum
theory attached to S (i.e. finding the corresponding integrals) essen-
tially reduces to the problem of computing the effective action Seff .
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We will now give a recipe of computing the effective action in terms
of amplitudes of Feynman diagrams, and see that it is computationally
easier than computing the sum over connected diagrams.

Definition 3.19. An edge e of a connected graph Γ is said to be a
bridge if the graph Γ \ e is disconnected. A connected graph without
bridges is called 1-particle irreducible (1PI).9

To compute the effective action, we will need to consider graphs with
external edges (but having at least one internal vertex). Such a graph
Γ (with N external edges) will be called 1-particle irreducible if so is
the corresponding “amputated” graph (i.e. the graph obtained from
Γ by removal of the external edges). In particular, a graph with one
internal vertex is always 1-particle irreducible, while a single edge graph
without internal vertices is defined not to be 1-particle irreducible. The
notions of a bridge and a 1-particle irreducible graph are illustrated by
Fig. 8.

a bridge

not a bridge

1PI graph with
two external edges

non-1PI graph with
four external edges

Figure 8.

9This is the physical terminology. The mathematical term is “2-connected”.
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Denote by G1PI(n, N) the set of isomorphism classes of 1-particle
irreducible graphs with N external edges and ni i-valent internal ver-
tices for each i (where isomorphisms are not allowed to move external
edges).

Theorem 3.20. The effective action Seff is given by the formula

Seff(x) =
B(x, x)

2
−
∑
i≥0

Bi(x, ..., x)

i!
,

where

BN(x, . . . , x) = ~
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ∈G1PI(n,N)

FΓ(Bx, . . . , Bx)

|Aut(Γ)|
.

Thus, Seff = S + ~S1 + ~2S2 + .. The expressions ~jSj are called the
j-loop corrections to the effective action.

This theorem allows physicists to worry only about 1-particle ir-
reducible diagrams, and is the reason why you will rarely see other
diagrams in a QFT textbook. As before, it is very useful in doing
low order computations, since the number of 1-particle irreducible di-
agrams with a given number of loops is much smaller than the number
of connected diagrams with the same number of loops.

Proof. The proof is based on the following lemma from graph theory.

Lemma 3.21. Any connected graph Γ can be uniquely represented as
a tree whose vertices are 1-particle irreducible subgraphs (with external
edges), and edges are the bridges of Γ.

The lemma is obvious. Namely, let us remove all bridges from Γ.
Then Γ will turn into a disjoint union of 1-particle irreducible graphs
which should be taken to be the vertices of the said tree.

The tree corresponding to the graph Γ is called the skeleton of Γ (see
Fig. 9).

It is easy to see that Lemma 3.21 implies Theorem 3.20. Indeed, it
implies that the sum over all connected graphs occuring in the expres-
sion of log ZS

Z0
can be written as a sum over skeleton trees, so that the

contribution from each tree is (proportional to) the contraction of ten-
sors Bi put in its vertices, and Bi is the (weighted) sum of amplitudes
of all 1-particle irreducible graphs with i external edges. �

3.14. 1-particle irreducible diagrams and the Legendre trans-
form. Recall the notion of Legendre transform. Let f be a smooth
function on a vector space Y , such that the map Y → Y ∗ given by
x → df(x) is a diffeomorphism. Then one can define the Legendre
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Graph: Skeleton:

Figure 9. The skeleton of a graph.

transform of f as follows. For p ∈ Y ∗, let x0 = x0(p) be the critical
point of the function (p, x)−f(x) (i.e. the unique solution of the equa-
tion df(x) = p). Then the Legendre transform of f is the function on
Y ∗ defined by

L(f)(p) = (p, x0)− f(x0).

It is easy to see that the differential of L(f) is also a diffeomorphism
Y ∗ → Y (in fact, inverse to df(x)), and that L2(f) = f .

Example 3.22. Let f(x) = ax2

2
, a 6= 0. Then px− f = px− x2

2
has a

critical point at p = x
a
, and the critical value is p2

2a
. Thus L(ax

2

2
) = p2

2a
.

More generally, if f(x) = B(x,x)
2

where B is a non-degenerate symmetric

form on Y then L(f)(p) = B−1(p,p)
2

. E.g., the Legendre transform of a

Lagrangian mv2

2
−U(x) of a particle of mass m with respect to velocity

v = ẋ is its Hamiltonian (energy) p2

2m
+U(x), and vice versa. This is, in

fact, so in complete generality, which is why Legendre transform plays
an important role in classical mechanics and field theory.

Note that the stationary phase formula implies that the Legendre
transform is the classical analog of the Fourier transform. Indeed,
the leading term of the asymptotics as ~ → 0 of the logarithm of

the (suitably normalized) Fourier transform ~− d2
∫
V
e
i(−(p,x)+S(x))

~ dx of

the Feynman density e
iS(x)

~ dx (where the integral is understood in the

sense of distributions) is − iL(S)(p)
~ .

Now let us consider Theorem 3.20 in the situation of Theorem 3.5.
Thus, S(x) = B(x,x)

2
+O(x3), and we look at

Z(p) = ~−
d
2

∫
V

e
(p,x)−S(x)

~ dx.
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By Theorem 3.20, one has

log
Z(p)

Z0

= −~−1Seff(x0, p),

where the effective action Seff(x, p) is the sum over 1-particle irreducible
graphs and x0 = x0(p) is its critical point.

Now, we must have Seff(x, p) = −p · x + Seff(x), since the only 1PI
graph which contains 1-valent internal vertices (corresponding to p) is
the graph with one edge, connecting an internal vertex with an external
one (so it yields the term −p·x, and other graphs contain no p-vertices).

This shows that ~ log Z(p)
Z0

is the critical value of p · x − Seff(x). Thus
we have proved the following.

Proposition 3.23. We have

Seff(x) = L(~ log Z(p)
Z0

), ~ log Z(p)
Z0

= L(Seff(x)).

Physicists formulate this result as follows: the effective action is the
Legendre transform of ~ times the logarithm of the generating function
for quantum correlators (and vice versa).

Exercise 3.24. Compute the 1-loop contribution to log Z
Z0

for

S(x) = x2

2
− g(x+ x3

6
).

Using this, compute the number of labeled n-vertex 1-loop graphs with
1-valent and 3-valent vertices only (be careful with double edges and
self-loops!). Check your answer by directly enumerating such graphs
with small number of vertices.

Exercise 3.25. Find the exponential generating function
∑

n an
zn

n!
for

the numbers an of labeled n-vertex trees with 1-valent and 4-valent ver-
tices. You may express the answer via inverse functions to polynomials.

Exercise 3.26. Find the one-loop contribution to the effective action

for S(x) = x2

2
− gx3

6
. That is, one has Seff = S + ~S1 +O(~2), and you

need to find S1. Which Feynman diagrams need to be considered?

Exercise 3.27. Consider the heat equation ut = 1
2
∆Bu, where ∆B

is the Laplace operator attached to B defined in Subsection 2.2. It is

solved by the heat flow u(x, t) = e
t∆B

2 u(x, 0). Show that the effective

action Seff for the action S(x) = B(x,x)
2
− S̃(x) can be computed as the

sum of contributions of 1PI Feynman diagrams without self-loops for

the action S◦(x) := B(x,x)
2
− S̃◦(x) where S̃◦(x) := e

~∆B
2 S̃(x) obtained

by transforming S̃ by the heat flow for time ~.
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