
4. Matrix integrals

Let hN be the space of Hermitian matrices of size N . The inner
product on hN is given by B(A1, A2) = Tr(A1A2). In this section we
will consider integrals of the form

ZN := ~−
N2

2

∫
hN

e−
S(A)

~ dA,

where the Lebesgue measure dA is normalized by the condition∫
hN

e−
Tr(A2)

2 dA = 1

(so we don’t have to drag around the
√

2π-factors), and

S(A) :=
Tr(A2)

2
−
∑
m≥1

gm
Tr(Am)

m

is the action functional.10 We will be interested in the behavior of the
coefficients of the expansion of ZN in gi for large N . The study of
this behavior will lead us to considering not simply Feynman graphs,
but actually fat (or ribbon) graphs, which are in fact 2-dimensional
surfaces. Thus, before we proceed further, we need to do some 2-
dimensional combinatorial topology.

4.1. Fat graphs. Recall from the proof of Feynman’s theorem that
given a finite collection of flowers and a matching σ on the set T of
endpoints of their edges, we can obtain a graph Γσ by connecting (or
gluing) the points which fall into the same pair.

Now, given an i-flower, let us inscribe it in a closed disk D (so that
the ends of the edges are on the boundary). Then take its small tubu-
lar neighborhood in D. This produces a region with piecewise smooth
boundary. We will equip this region and its boundary with the stan-
dard orientation, and call it a fat i-valent flower. The boundary of a
fat i-valent flower has the form P1Q1P2Q2 . . . PiQiP1, where Pi, Qi are
the angle points, the intervals PjQj are arcs on ∂D, and QjPj+1 are
(smooth) arcs lying inside D (see Fig. 10).

Now, given a collection of usual flowers and a matching σ as above,
we can consider the corresponding fat flowers, and glue them, respect-
ing the orientation, along intervals PjQj according to σ. This will
produce a compact oriented surface with boundary (the boundary is

glued from intervals QjPj+1). We will denote this surface by Γ̃σ, and

10Note that we divide by m and not by m!. We will see below why such normal-
ization will be more convenient.
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Figure 10.

call it the fattening of Γ with respect to σ. A fattening of a graph will
be called a fat (or ribbon) graph.

Thus, a fat graph is not just an oriented surface with boundary, but
such a surface together with a partition of this surface into fat flowers.

Note that the same graph Γ can have many fattenings which are non-
homeomorphic (albeit homotopy equivalent) surfaces, and in particular
the genus g of the fattening is not determined by Γ (see Fig. 11).

Γ1 g = 0 Γ2 g = 0

Γ3 g = 1

Figure 11. Gluing a fat graph from fat flowers

4.2. Matrix integrals in large N limit, planar graphs, and the
genus expansion. Let us now return to the study of the integral ZN .
We have

Bm(A, ..., A) = (m− 1)!Tr(Am).
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Thus by Feynman’s theorem,

logZN =
∑
n

∏
i

(gi~
i
2
−1)ni

i!nini!

∑
σ∈Πc(Tn)

F(σ),

where the summation is taken over the set Πc(Tn) of all matchings
of T = Tn that produce a connected graph Γσ, and F(σ) denotes the
contraction of the tensors (m− 1)!Tr(Am) using σ. So let us compute
F(σ).

Let {ei} be the standard basis of CN , and {e∗i } the dual basis of the
dual space. Then the tensor Tr(Am) can be written as

Tr(Am) =
N∑

i1,...,im=1

(ei1 ⊗ e∗i2 ⊗ ei2 ⊗ e
∗
i3
⊗ · · · ⊗ eim ⊗ e∗i1 , A

⊗m).

Thus

Bm =
∑

s∈Sm−1

N∑
i1,...,im=1

s(ei1 ⊗ e∗i2 ⊗ ei2 ⊗ e
∗
i3
⊗ · · · ⊗ eim ⊗ e∗i1)

(sum over all possible cyclic orderings of edges of an m-valent flower).
Hence

F(σ) =
∑

s∈
∏
i S

ni
i−1

F̃(sσ),

where F̃(σ) is obtained by contracting the tensors

(4.1)
N∑

i1,...,im=1

ei1 ⊗ e∗i2 ⊗ ei2 ⊗ e
∗
i3
⊗ · · · ⊗ eim ⊗ e∗i1

according to the fat graph Γ̃σ. It follows that

logZN =
∑
n

∏
i

gnii ~ni( i2−1)

i!nini!

∑
σ∈Π(Tn)

∑
s∈

∏
i S

ni
i−1

F̃(sσ) =

∑
n

∏
i

gnii ~ni( i2−1)

inini!

∑
σ

F̃(σ)

(the product
∏

i i!
ni in the denominator got replaced by

∏
i i
ni since in

the sum
∑

s,σ F̃(sσ) every term F̃(σ) occurs |
∏

i S
ni
i−1| =

∏
i(i − 1)!ni

times).
For a surface Σ with boundary, let ν(Σ) denote the number of con-

nected components of the boundary.

Proposition 4.1. F̃(σ) = N ν(Γ̃σ).
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Proof. One can visualize each summand in the sum (4.1) as a labeling
of the angle points P1, Q1, . . . , Pm, Qm on the boundary of a fat m-
valent flower by i1, i2, i2, i3, . . . , im, i1. Now, the contraction using σ
of some set of such monomials is nonzero iff the subscript is constant

along each boundary component of Γ̃σ (see Fig. 12). This implies the
result. �

ei

e∗j
ej

e∗k
ek

e∗l

e∗m

en

e∗n
ep

e∗p

em

Contraction nonzero iff
i = r, j = p, j = m, k = r,
k = p, i = m,
that is
i = r = k = p = j = m.

Figure 12. Contraction defined by a fat graph.

Let G̃c(n) be the set of isomorphism classes of connected fat graphs

with ni i-valent vertices for i ≥ 1. For Γ̃ ∈ G̃c(n), let b(Γ̃) be the
number of edges minus the number of vertices of the underlying usual
graph Γ.

Corollary 4.2.

logZN =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃c(n)

N ν(Γ̃)

|Aut(Γ̃)|
=

∑
n

∏
i

gnii
∑

Γ̃∈G̃c(n)

N ν(Γ̃)~b(Γ̃)

|Aut(Γ̃)|
.

Proof. Let Gcyc
n :=

∏
i(Sni n (Z/iZ)ni). This group acts on Tn, so that

Γ̃σ = Γ̃gσ, for any g ∈ Gcyc
n . Moreover, the group acts transitively on

the set of σ giving a fixed fat graph Γ̃σ, and the stabilizer of any σ is

Aut(Γ̃σ). This implies the result, as |Gcyc
n | =

∏
i i
nini! which cancels

the denominators. �

Now for any compact connected surface Σ with boundary, let g(Σ)

be the genus of Σ. Then for a connected fat graph Γ̃,

b(Γ̃) = 2g(Γ̃)− 2 + ν(Γ̃)

(minus the Euler characteristic). Thus, defining

ẐN(~) := ZN( ~
N

),

we obtain
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Theorem 4.3.

log ẐN =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃c(n)

N2−2g(Γ̃)

|Aut(Γ̃)|
.

This implies the following important result, due to t’Hooft.

Theorem 4.4. (1) There exists a limit W∞ := limN→∞
log ẐN
N2 . This

limit is given by the formula

W∞ =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃c(n)[0]

1

|Aut(Γ̃)|
,

where G̃c(n)[0] denotes the set of planar connected fat graphs, i.e.
those which have genus zero.

(2) Moreover, there exists an expansion

log ẐN
N2

=
∑

g∈Z≥0

agN
−2g,

where

ag =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃c(n)[g]

1

|Aut(Γ̃)|
,

and G̃c(n)[g] denotes the set of connected fat graphs of genus g.

Remark 4.5. Genus zero fat graphs are said to be planar because the
underlying usual graphs can be put on the 2-sphere (and hence on the
plane) without self-intersections.

Remark 4.6. t’Hooft’s theorem may be interpreted in terms of the
usual Feynman diagram expansion. Namely, it implies that for large
N , the leading contribution to logZN( ~

N
) comes from the terms in the

Feynman diagram expansion corresponding to planar graphs (i.e. those
that admit an embedding into the 2-sphere).

4.3. Integration over real symmetric matrices. One may also
consider the matrix integral over the space sN of real symmetric ma-
trices of size N . Namely, one puts

ZN = ~−
N(N+1)

4

∫
sN

e−
S(A)

~ dA,

where S and dA are as above. Let us generalize Theorem 4.4 to this
case.

As before, consideration of the large N limit leads to consideration
of fat flowers and gluing of them. However, the exact nature of gluing
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is now somewhat different. Namely, in the Hermitian case we had
(ei⊗ e∗j , ek ⊗ e∗l ) = δilδjk, which forced us to glue fat flowers preserving
orientation. On the other hand, in the real symmetric case e∗i = ei, and
the inner product of the functionals ei ⊗ ej on the space of symmetric
matrices is given by (ei ⊗ ej, ek ⊗ el) = δikδjl + δilδjk. This means
that besides the usual (orientation preserving) gluing of fat flowers,
we now must allow gluing with a twist of the ribbon by 180◦. Fat
graphs thus obtained will be called twisted fat graphs. That means, a
twisted fat graph is a surface with boundary (possibly not orientable),
together with a partition into fat flowers, and orientations on each of
them (which may or may not match at the cuts, see Fig.13).

Figure 13. Twisted fat graph

Now one can show analogously to the Hermitian case that the 1
N

expansion of log ẐN (where ẐN := ZN(2~
N

)) is given by the same formula

as before, but with summation over the set G̃tw
c (n) of twisted fat graphs:

Theorem 4.7.

log ẐN =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃tw

c (n)

N2−2g(Γ̃)

|Aut(Γ̃)|
.

Here the genus g of a (possibly non-orientable) surface is defined for
closed surfaces by g := 1− χ

2
, where χ is the Euler characteristic. Thus

the genus of RP2 is 1
2
, the genus of the Klein bottle is 1, and so on.

In particular, we have the following analog of t’Hooft’s theorem.

Theorem 4.8. (1) There exists a limit W∞ := limN→∞
log ẐN
N2 . This

limit is given by the formula

W∞ =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃tw

c (n)[0]

1

|Aut(Γ̃)|
,

where G̃tw
c (n)[0] denotes the set of planar connected twisted fat graphs,

i.e. those which have genus zero.
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(2) Moreover, there exists an expansion

log ẐN
N2

=
∑

g∈ 1
2
Z≥0

agN
−2g,

where

ag =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃tw

c (n)[g]

1

|Aut(Γ̃)|
,

and G̃tw
c (n)[g] denotes the set of connected twisted fat graphs which have

genus g.

Exercise 4.9. Consider the matrix integral over the space qN of quater-
nionic Hermitian matrices of size N . Show that in this case the results
are the same as in the real case, except that each twisted fat graph
counts with a sign equal to (−1)ν, where ν is the number of boundary
components. In other words, logZquat

N (~) equals logZreal
2N (~) with N

replaced by −N .
Hint: Use that the quaternionic unitary group U(N,H) is a real

form of Sp(2N), and qN is a real form of the representation of Λ2V ,
where V is the standard (vector) representation of Sp(2N). Compare to
the case of real symmetric matrices, where the relevant representation
is S2V for O(N), and the case of complex Hermitian matrices, where
it is V ⊗ V ∗ for GL(N).

4.4. The number of ways to glue a surface from a polygon and
the Wigner semicircle law. Matrix integrals are so rich that even
the simplest possible example reduces to a nontrivial counting prob-
lem. Namely, consider the matrix integral ZN over complex Hermitian

matrices with ~ = 1 in the case S(A) = Tr(A2)
2
− sTr(A2m)

2m
, where s2 = 0

(i.e. we work over the ring C[s]/(s2)). Then from Theorem 4.4 we get∫
hN

Tr(A2m)e−
Tr(A2)

2 dA = Pm(N),

where Pm(N) is a polynomial given by the formula

Pm(N) =
∑
g≥0

εg(m)Nm+1−2g,

and εg(m) is the number of ways to glue a surface of genus g from
a 2m-gon with labeled sides, i.e., to match the sides and then glue
the matching ones to each other in an orientation-preserving manner.
Indeed, in this case we have only one fat flower of valency 2m, which
has to be glued with itself; so a direct application of our Feynman
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rules leads to counting ways to glue a surface of a given genus from a
polygon.

The value of this integral is given by the following non-trivial theo-
rem.

Theorem 4.10. (Harer-Zagier, [HZ] 1986)

Pm(x) =
(2m)!

2mm!

m∑
p=0

(
m
p

)
2p
x(x− 1) . . . (x− p)

(p+ 1)!
.

The theorem is proved in the next subsections.
Looking at the leading coefficient of Pm, we get

Corollary 4.11. The number of ways to glue a sphere from a 2m-gon

is the Catalan number Cm = (2m)!
m!(m+1)!

= 1
m+1

(
2m
m

)
.

Corollary 4.11 actually has another (elementary combinatorial) proof,
which is as follows. For each matching σ on the set of sides of the 2m-
gon, let us connect the midpoints of the matched sides by straight lines
(Fig.14). It is geometrically evident that if these lines don’t intersect
then the gluing will give a sphere. We claim that the converse is true
as well. Indeed, assume the contrary, i.e. that for cyclically ordered
edges a, b, c, d, the edge a connects to c and b to d. Then it is easy to
see that gluing these two pairs of edges gives a torus with a hole (or
without if m = 2). But an (open) torus with a hole can’t be embedded
into a sphere (e.g. it contains a copy of K5), contradiction.

Figure 14. Matching of sides of a 6-gon.

Now it remains to count the number of ways to connect midpoints of
sides with lines without intersections. Suppose we draw one such line,
such that the number of sides on the left of it is 2k and on the right is
2l (so that k + l = m − 1). Then we face the problem of connecting
the two sets of 2k and 2l sides without intersections. This shows that
the number of gluings Dm satisfies the recursion

Dm =
∑

k+l=m−1

DkDl, D0 = 1.

59



In other words, the generating function

h(x) :=
∑
m

Dmx
m = 1 + x+ · · ·

satisfies the equation h(x)− 1 = xh(x)2. This implies that

h(x) =
1−
√

1− 4x

2x
,

which yields that Dm = Cm. We are done.
Corollary 4.11 can be used to derive the following fundamental result

from the theory of random matrices, discovered by Wigner in 1955.

Theorem 4.12. (Wigner’s semicircle law) Let f be a continuous func-
tion on R of at most polynomial growth at infinity. Then

lim
N→∞

1

N

∫
hN

Trf( A√
N

)e−
Tr(A2)

2 =
1

2π

∫ 2

−2

f(x)
√

4− x2dx.

This theorem is called the semicircle law because it says that the
graph of the density of eigenvalues of a large random Hermitian matrix
distributed according to the “Gaussian unitary ensemble” (i.e. with

density e−
Tr(A2)

2 dA) is a semicircle. In particular, we see that for large

N almost all eigenvalues of A belong to the interval [−2
√
N, 2
√
N ], so

the limit does not depend on the values of f outside [−2, 2].

Proof. By Weierstrass’ theorem on uniform approximation of a contin-
uous function on an interval by polynomials, we may assume that f is
a polynomial. (Exercise: Justify this step). Thus, it suffices to check
the result if f(x) = x2m. In this case, by Corollary 4.11, the left hand
side is Cm. On the other hand, an elementary computation yields

1

2π

∫ 2

−2

x2m
√

4− x2dx = Cm,

which implies the theorem. �

4.5. Hermite polynomials. The proof11 of Theorem 4.10 given below
uses Hermite polynomials. So let us recall their properties.

Hermite polynomials are defined by the formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

So the leading term of Hn(x) is (2x)n.
We collect the standard properties of Hn(x) in the following theorem.

11I adopted this proof from D.Jackson’s notes.
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Theorem 4.13. (i) The exponential generating function of Hn(x) is

f(x, t) =
∑
n≥0

Hn(x)
tn

n!
= e2xt−t2 .

(ii) Hn(x) satisfy the differential equation f ′′ − 2xf ′ + 2nf = 0.

In other words, Hn(x)e−x
2/2 are eigenfunctions of the operator L =

−1
2
∂2 + 1

2
x2 (Hamiltonian of the quantum harmonic oscillator) with

eigenvalues n+ 1
2
.

(iii) Hn(x) are orthogonal:

1√
π

∫ ∞
−∞

e−x
2

Hm(x)Hn(x)dx = 2nn!δmn.

Moreover, the functions Hn(x)e−
x2

2 form an orthogonal basis of L2(R).
(iv) One has

1√
π

∫ ∞
−∞

e−x
2

x2mH2k(x)dx =
(2m)!

(m− k)!
22(k−m)

(if k > m, the answer is zero).
(v) One has

H2
r (x)

2rr!
=

r∑
k=0

r!

2kk!2(r − k)!
H2k(x).

Proof. (sketch) (i) Follows immediately from the fact that the operator∑
n≥0(−1)n t

n

n!
dn

dxn
maps a function g(x) to g(x− t).

(ii) Follows from (i) and the fact that the function f(x, t) satisfies
the PDE

fxx − 2xfx + 2tft = 0.

(iii) The orthogonality follows from (i) by direct integration:

1√
π

∫
R
f(x, t)f(x, u)e−x

2

dx =
1√
π

∫
R
e2ut−(x−u−t)2

dx = e2ut.

Thus the functions Hn(x)e−
x2

2 form an orthogonal system in L2(R).
To show that these functions are complete, denote by E ⊂ L2(R)

the closure of their span C[x]e−
x2

2 . By approximating the function eipx

by its Taylor polynomials, it is easy to see that eipx−
x2

2 ∈ E for any
p ∈ R. Thus for any compactly supported smooth φ ∈ C∞0 (R) we have

φ(x)e−
x2

2 =

∫
R
φ̂(p)eipx−

x2

2 dp ∈ E.
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where φ̂ is the (suitably normalized) Fourier transform of φ. In other
words, C∞0 (R) is dense in E. But C∞0 (R) is clearly dense in L2(R), so
E = L2(R), as claimed.

(iv) By (i), one should calculate
∫
R x

2me2xt−t2e−x
2
dx. This integral

equals∫
R
x2me−(x−t)2

dx =

∫
R
(y+t)2me−y

2

dy ==
√
π
∑
p

(
2m
2p

)
(2m− 2p)!

2m−p(m− p)!
t2p.

The result is now obtained by extracting individual coefficients.
(v) By (iii), it suffices to show that

1√
π

∫
R
H2
r (x)H2k(x)e−x

2

dx =
2r+kr!2(2k)!

k!2(r − k)!

To prove this identity, let us integrate the product of three generating
functions. By (i), we have

1√
π

∫
R
f(x, t)f(x, u)f(x, v)e−x

2

dx =

1√
π

∫
R
e2(ut+uv+tv)−(x−u−t−v)2

dx = e2(ut+tv+uv).

Extracting the coefficient of trurv2k, we get the result. �

4.6. Proof of Theorem 4.10. We need to compute the integral∫
hN

Tr(A2m)e−
Tr(A2)

2 dA.

To do this, we note that the integrand is invariant with respect to
conjugation by unitary matrices. Therefore, the integral can be reduced
to an integral over the eigenvalues λ1, . . . , λN of A.

More precisely, consider the spectrum map σ : hN → RN/SN . It
is well known (due to H.Weyl) that the direct image σ∗dA is given

by the formula σ∗dA = Ce−
∑
i

λ2
i
2

∏
i<j(λi − λj)2dλ, where C > 0 is a

normalization constant that will not be relevant to us. Thus, we have

Pm(N) =
NJm
J0

, Jm :=

∫
RN

(
1

N

∑
i

λ2m
i )e−

∑
i

λ2
i
2

∏
i<j

(λi − λj)2dλ.

To calculate Jm, we will use Hermite polynomials. Observe that since
Hn(x) are polynomials of degree n with highest coefficient 2n, we have∏

i<j

(λi − λj) = 2−
N(N−1)

2 det(Hk(λ`)),

62



where k runs through the set 0, 1, . . . , N − 1 and ` through 1, ..., N .
Thus, we find
(4.2)

Jm = 2m+N2

2

∫
RN
λ2m

1 e−
∑
i λ

2
i

∏
i<j

(λi − λj)2dλ =

2m−
N(N−2)

2

∫
RN
λ2m

1 e−
∑
i λ

2
i det(Hk(λj))

2dλ =

2m−
N(N−2)

2

∑
σ,τ∈SN

(−1)σ(−1)τ
∫
RN
λ2m

1 e−
∑
i λ

2
i

∏
i

Hσ(i)(λi)Hτ(i)(λi)dλ.

(Here (−1)σ denotes the sign of σ).
Since Hermite polynomials are orthogonal, the only terms in this

sum which are nonzero are the terms with σ(i) = τ(i) for i = 2, . . . , N .
That is, the nonzero terms have σ = τ . Thus, we have

(4.3)

Jm = 2m−
N(N−2)

2

∑
σ∈SN

∫
RN
λ2m

1 e−
∑
i λ

2
i

∏
i

Hσi(λi)
2dλ =

2m−
N(N−2)

2 (N − 1)!γ0 . . . γN−1

N−1∑
j=0

1

γj

∫ ∞
−∞

x2mHj(x)2e−x
2

dx,

where γi :=
∫∞
−∞Hi(x)2e−x

2
dx are the squared norms of the Hermite

polynomials. Applying this for m = 0 and dividing NJm by J0, we find

Pm(N) = 2m
N−1∑
j=0

1

γj

∫ ∞
−∞

x2mHj(x)2e−x
2

dx.

Using Theorem 4.13 (iii) and (v), we find that γi = 2ii!
√
π, and hence

Pm(N) =
1√
π

∫
R

N−1∑
j=0

j∑
k=0

2mx2mH2k(x)

2kk!2(j − k)!
e−x

2

dx.

Now, using Theorem 4.13 (iv), we get

Pm(N) =
(2m)!

2m

N−1∑
j=0

j∑
k=0

2kj!

(m− k)!k!2(j − k)!
=

(2m)!

2mm!

N−1∑
j=0

j∑
k=0

2k
(
m
k

)(
j
k

)
.
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The sum over k can be represented as the constant term of a polyno-
mial:

j∑
k=0

2k
(
m
k

)(
j
k

)
= C.T.((1 + z)m(1 + 2z−1)j).

Therefore, summation over j (using the formula for the sum of the
geometric progression) yields

Pm(N) =
(2m)!

2mm!
C.T.

(
(1 + z)m

(1 + 2z−1)N − 1

2z−1

)
=

(2m)!

2mm!

m∑
p=0

2p
(
m
p

)(
N

p+ 1

)
.

We are done.

Exercise 4.14. Find the number of ways to glue an orientable surface
of genus g ≥ 1 from a 4g-gon (the gluing must preserve orientation),
and prove your answer.

Answer: (4g−1)!!
2g+1

.

Exercise 4.15. Consider a random Hermitian matrix A ∈ hN , dis-
tributed with Gaussian density e−Tr(A2)dA. Show that the most likely
eigenvalues of A are the roots of the N-th Hermite polynomial HN .

Hint. 1) Write down the system of algebraic equations for the max-
imum of the density on eigenvalues.

2) Introduce the polynomial P (z) =
∏

i(z−λi), where λi are the most
likely eigenvalues. Let f = P ′/P . Compute f ′ + f 2 (look at the poles).

3) Reduce the obtained Riccati equation for f to a second order linear
differential equation for P . Show that this equation is the Hermite’s
equation, and deduce that P = HN

2N
.
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