
5. The Euler characteristic of the moduli space of
curves

Matrix integrals (in particular, the computation of the polynomial
Pm(x)) can be used to calculate the orbifold Euler characteristic of the
moduli space of curves. This was done by Harer and Zagier in 1986.
Here we will give a review of this result (with some omissions).

5.1. Euler characteristics of groups. We start with recalling some
basic notions from algebraic topology.

Let Γ be a discrete group, and Y be a contractible finite dimensional
CW complex, on which Γ acts cellularly. This means that Γ acts by
homeomorphisms of Y that map each cell homeomorphically to another
cell. We will assume that the stabilizer of each cell is a finite group
(i.e. Y is a proper Γ-complex).

Suppose first that the action of Γ is free (i.e. the stabilizers of cells
are trivial). This is equivalent to saying that Γ is torsion free (i.e. has
no nontrivial finite subgroups), since a finite group cannot act without
fixed points on a contractible finite dimensional cell complex (as it has
infinite cohomological dimension).

In this case we can define a cell complex Y/Γ (a classifying space for
Γ), and we have H i(Y/Γ, A) = H i(Γ, A) for any coefficient group A. In
particular, if Y/Γ is finite then Γ has finite cohomological dimension,
and the Euler characteristic χ(Γ) :=

∑
i(−1)i dimH i(Γ,Q) is equal to∑

i(−1)ini(Y/Γ), where ni(Y/Γ) denotes the number of cells in Y/Γ of
dimension i.

This setting, however, is very restrictive, since it allows only groups
of finite cohomological dimension, and in particular excludes all non-
trivial finite groups. So let us consider a more general setting: assume
that some finite index subgroup Γ′ ⊂ Γ, rather than Γ itself, satisfies the
above conditions. In this case, on may define the Euler characteristic
of Γ in the sense of Wall, which is the rational number [Γ : Γ′]−1χ(Γ′).

It is easy to check that the Euler characteristic in the sense of Wall
can be computed using the following Quillen’s formula

χ(Γ) =
∑

σ∈cells(Y)/Γ

(−1)dimσ

|Stabσ|
.

In particular, this number is independent of Γ′ (which is also easy to
check directly).

Example 5.1. If G is a finite group then χ(G) = |G|−1 (one takes the
trivial group as the subgroup of finite index).
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Example 5.2. G = SL2(Z). This group contains a subgroup F of
index 12, which is free in two generators (check it!). The group F
has Euler characteristic −1, since its classifying space Y/F is figure
“eight” (i.e., Y is the universal cover of figure “eight”). Thus, the
Euler characteristic of SL2(Z) is − 1

12
.

The Euler characteristic in the sense of Wall has a geometric inter-
pretation in terms of orbifolds. Namely, suppose that Γ is as above
(i.e. χ(Γ) is a well defined rational number), and M is a contractible
manifold, on which Γ acts freely and properly discontinuously. In this
case, stabilizers of points are finite, and thus M/Γ is an orbifold. This
means, in particular, that to every point x ∈ M/Γ is attached a finite
group Aut(x), of size ≤ [Γ : Γ′]. Let Xm be the subset of M/Γ, consist-
ing of points x such that Aut(x) has order m. It often happens that
Xm has the homotopy type of a finite cell complex. In this case, the
orbifold Euler characteristic of M/Γ is defined to be

χorb(M/Γ) =
∑
m

χ(Xm)

m
.

Now, we claim that χorb(M/Γ) = χ(Γ). Indeed, looking at the pro-
jection M/Γ′ →M/Γ, it is easy to see that χorb(M/Γ) = 1

[Γ:Γ′]
χ(M/Γ′).

But M/Γ′ is a classifying space for Γ′, so χ(M/Γ′) = χ(Γ′), which im-
plies the claim.

Example 5.3. Consider the group Γ = SL2(Z) acting on the upper
half plane H. Then H/Γ is the moduli space of elliptic curves. So
as a topological space it is C, where all points have automorphism
group Z/2, except the point i having automorphism group Z/4, and

ρ = −1+i
√

3
2

which has automorphism group Z/6. Thus, the orbifold

Euler characteristic of H/Γ is (−1)1
2

+ 1
4

+ 1
6

= − 1
12

. This is not
surprising since we proved that χorb(H/Γ) = χ(Γ), which was computed
to be − 1

12
.

5.2. The mapping class group. Now let g ≥ 1 be an integer, and
Σ be a closed oriented surface of genus g. Let p ∈ Σ, and let Γ1

g be
the group of isotopy classes of diffeomorphisms of Σ which preserve
p. We will recall without proof some standard facts about this group,
following the paper of Harer and Zagier, [HZ].

The group Γ1
g is not torsion free, but it has a torsion free subgroup of

finite index. Namely, consider the homomorphism Γ1
g → Sp(2g,Z/nZ)

given by the action of Γ1
g on H1(Σ,Z/nZ). Then for large enough n (in

fact, n ≥ 3), the kernel Kn of this map is torsion free.
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It turns out that there exists a contractible finite dimensional cell
complex Yg, to be constructed below, on which Γ1

g acts cellularly with

finitely many cell orbits. Thus, the Euler characteristic of Γ1
g in the

sense of Wall is well defined.

5.3. The Harer-Zagier theorem. The Euler characteristic of Γ1
g is

given by the following theorem.

Theorem 5.4. (Harer-Zagier) One has

χ(Γ1
g) = −B2g

2g
,

where Bn are the Bernoulli numbers.

Remark 5.5. The group Γ1
g acts on the Teichmüller space T 1

g , which
is, by definition, the space of pairs ((R, z), f), where (R, z) is a complex
Riemann surface with a marked point z, and f is an isotopy class of
diffeomorphisms R → Σ that map z to p. One may show that T 1

g is
a contractible manifold of dimension 6g − 4, and that the action of
Γ1

g on T 1
g is properly discontinuous. In particular, we may define an

orbifold M1
g = T 1

g /Γ
1
g. This orbifold parametrizes pairs (R, z) as above;

therefore, it is called the moduli space of Riemann surfaces (=smooth
complex projective algebraic curves) of genus g with one marked point.
Thus, Theorem 5.4 gives the orbifold Euler characteristic of the moduli
space of curves of genus g with one marked point.

Remark 5.6. If g > 1, one may define the analogs of the above ob-
jects without marked points, namely the mapping class group Γg, the
Teichmüller space Tg, and the moduli space of curves Mg = Tg/Γg (one
can do it for g = 1 as well, but in this case there is no difference with
the case of one marked point, since the translation group allows one to
identify any two points on Σ). It is easy to see that for g > 1 we have
an exact sequence 1 → π1(Σ) → Γ1

g → Γg → 1, which implies that

χ(Γg) = χ(Γ1
g)/χ(Σ). Thus, the Harer-Zagier theorem implies that

χ(Γg) = χorb(Mg) = B2g

4g(g−1)
.

5.4. Construction of the complex Yg. We begin the proof of The-
orem 5.4 with the construction of the complex Yg, following [HZ]. We
will first construct a simplicial complex with a Γ1

g action, and then use
it to construct Yg.

Let (α1, ..., αn) be a collection of closed simple unoriented curves on
Σ, which begin and end at p, and do not intersect other than at p.
Such a collection is called an arc system if two conditions are satisfied:

(A) none of the curves is contractible to a point;
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(B) none of the curves is contractible to another.
Define a simplicial complex A, whose n − 1-simplices are isotopy

classes of arc systems consisting of n ≥ 1 arcs, and the boundary of
a simplex corresponding to (α1, ...αn) is the union of simplices corre-
sponding to the arc system (α1, ..., α̂i, ..., αn) (αi is omitted).

It is clear that the group Γ1
g acts simplicially on A.

Example 5.7. Let g = 1, i.e. Σ = S1 × S1. Then Γ1
g = SL2(Z).

Up to its action, there are only three arc systems (Fig. 15). Namely,
viewing S1 as the unit circle in the complex plane, and representing
arcs parametrically, we may write these three systems as follows:

B0 = {(eiθ, 1)};B1 = {(eiθ, 1), (1, eiθ)};B2 = {(eiθ, 1), (1, eiθ), (eiθ, eiθ)}
From this it is easy to find the simplicial complex A. Namely, let T
be the tree with root t0 connected to three vertices t1, t2, t3, with each
ti connected to two vertices ti1, ti2, each tij connected to tij1, tij2, etc.
(Fig.16). Put at every vertex of T a triangle, with sides transversal to
the three edges going out of this vertex, and glue the triangles along
the sides. This yields the complex A, Fig.17 (check it!). The action
of SL2(Z) (or rather PSL2(Z)) on this complex is easy to describe.
Namely, recall that PSL2(Z) is generated by S, U with defining rela-
tions S2 = U3 = 1. The action of S, U on T is defined as follows: S is
the reflection with flip with respect to a side of the triangle ∆0 centered
at t0 (Fig.18), and U is the rotation by 2π/3 around t0.

B0 B1 B2

Figure 15. Three arc systems.

This example shows that the action of Γ1
g on A is not properly dis-

continuous, as some simplices have infinite stabilizers (in the example,
it is the 0-dimensional simplices). Thus, we would like to throw away
the “bad” simplices. To do so, let us say that an arc system (α1, .., αn)
fills up Σ if it cuts Σ into a union of regions diffeomorphic to the open
disk. Let A∞ be the union of the simplices in A corresponding to arc
systems that do not fill up Σ. This is a closed subset, since the property
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Figure 16. The tree T

of not filling up Σ is obviously stable under taking an arc subsystem.
Thus, A \ A∞ is an open subset of A. In the example above, it is the
complex A with 0-dimensional simplices removed.

Figure 17. The complex A

Figure 18. Reflection with a flip.
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The following theorem shows that A \A∞ is in fact a combinatorial
model for the Teichmüller space T 1

g , with the action of Γ1
g.

Theorem 5.8. (Mumford) (a) The action of Γ1
g on A \A∞ is properly

discontinuous.
(b) A \ A∞ is topologically a manifold, which is Γ1

g-equivariantly

homeomorphic to the Teichmüller space T 1
g ; in particular, it is con-

tractible.

Remark 5.9. Theorem 5.8 exhibits the significance of conditions (A)
and (B). Indeed, if either of these conditions were dropped, then one
could consider arc systems (α1, ..., αn) with arbitrarily large n, while
with conditions (A),(B), as seen from Theorem 5.8, the largest value
of n is 6g − 3.

Remark 5.10. If g = 1, Theorem 5.8 is clear from the explicit de-
scription of A (convince yourself of this!).

Theorem 5.8 is rather deep, and we will not give its proof, which
is beyond the scope of this text. Rather, we will use it to define the
“Poincaré dual” CW complex Yg of A \ A∞. Namely, to each filling
arc system (α1, ..., αn) we will assign a 6g− 3−n-dimensional cell, and
the boundary relation is opposite to the one before. The existence of
this CW complex follows from the fact that A \A∞ is a manifold. For
instance, in the case g = 1 the complex Yg is the tree T .

Now, the complex Yg is contractible (since so is A\A∞), and admits a
cellular action of Γ1

g with finitely many cell orbits and finite stabilizers.

This means that the Euler characteristic of Γ1
g is given by Quillen’s

formula.

χ(Γ1
g) =

∑
σ∈cells(Yg)/Γ1

g

(−1)dimσ 1

|Stabσ|
.

Example 5.11. In the g = 1 case, T has one orbit of 0-cells and one
orbit of 1-cells. The stabilizer of a 0-cell in SL2(Z) is Z/6, and of a
1-cell is Z/4. Hence, χ(SL2(Z)) = 1

6
− 1

4
= − 1

12
, which was already

computed before by other methods.

5.5. Enumeration of cells in Yg/Γ
1
g. Now it remains to count the

cells in Yg/Γ
1
g, i.e. to enumerate arc systems which fill Σ (taking into

account signs and stabilizers) To do this, we note that by definition of
“filling”, any filling arc system S defines a cellular decomposition of Σ.
Thus, let S∗ be the Poincare dual of this cellular decomposition. Since
S has a unique zero cell, S∗ has a unique 2-cell. Let n be the number
of 1-cells in S (or S∗). Then (Σ, S∗) is obtained by gluing a 2n-gon
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(=the unique 2-cell) according to a matching of its sides preserving
orientation. (Note that S can be reconstructed as (S∗)∗).

This allows us to link the problem of enumerating filling arc systems
with the problem of counting such gluings, which was solved using ma-
trix integrals. Namely, the problem of enumerating filling arc systems
is essentially solved modulo one complication: because of conditions
(A) and (B) on an arc system, the gluings we will get will be not ar-
bitrary gluings, but gluings which also must satisfy some conditions.
Namely, we have

Lemma 5.12. Let (α1, ..., αn) be a system of curves, satisfying the
axioms of a filling arc system, except maybe conditions (A) and (B).
Then

(i) (α1, ..., αn) satisfies condition (A) iff no edge in the corresponding
gluing is glued to a neighboring edge.

(ii) (α1, ..., αn) satisfies condition (B) iff no two consequtive edges
are glued to another pair of consequtive edges in the opposite order.

loop homo-
topic to 0.

Figure 19.

loops homotopic
to each other.

Figure 20.

The lemma is geometrically evident, and its proof is obtained by
drawing a picture (Fig.19 for (i), Fig.20 for (ii)). Motivated by the
lemma, we will refer to the conditions on a gluing in (i) and (ii) also
as conditions (A) and (B).
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Denote by εg(n), µg(n), λg(n) the numbers of gluings of a (labeled)
2n-gon into a surface of genus g, with no conditions, condition (A), and
conditions (A),(B), respectively (so εg(n) is the quantity we already
studied).

Proposition 5.13. One has12

χ(Γ1
g) =

∑
n

(−1)n−1λg(n)

2n
.

Proof. Each filling arc system σ arises from 2n/|Stab(σ)| gluings (since
the labeling of the polygon does not matter for the resulting surface
with an arc system). Thus, the result follows from Quillen’s formula.

�

5.6. Computation of
∑

n(−1)n−1 λg(n)

2n
. Now it remains to compute

the sum on the right hand side. To do this, we will need to link λg(n)
with εg(n), which has already been computed. This is accomplished
by the following lemma.

Lemma 5.14. (i) One has

εg(n) =
∑
i

(
2n
i

)
µg(n− i).

(ii) One has

µg(n) =
∑
i

(
n
i

)
λg(n− i).

Proof. (i) Let σ be a matching of the sides of a 2n-gon ∆ with labeled
vertices. If there is a pair of consecutive edges that are matched, we
can glue them to each other to obtain a 2n−2-gon. Proceeding like this
as long as we can, we will arrive at a 2n− 2i-gon ∆σ, with a matching
σ′ of its sides which satisfies condition (A). Note that ∆σ and σ′ do
not depend on the order in which neighboring edges were glued to each
other, and ∆σ has a canonical labeling by 1, ..., 2n−2i, in the increasing
order of the “old” labels. Now, we claim that each (∆σ, σ

′) is obtained

in exactly

(
2n
i

)
ways; this implies the required statement.

Indeed, let us consider the vertices of ∆ that ended up in the interior
of ∆σ. They have mapped to i points in the interior (each gluing of a
pair of edges produces a new point). Let us call these points w1, ..., wi,
and let νj be the smallest label of a vertex of ∆ that goes to wj (where
we label the vertices so that the k-th edge connects vertex k with vertex

12Note that λg(n) = 0 for almost all n, so this sum is finite.
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k+ 1). Then ν1, ..., νi is a subset of {1, ..., 2n}. This subset completely
determines the matching σ if (∆σ, σ

′) are given: namely, we should
choose a νj such that νj + 1 6= νk for any k, and glue the two edges
adjacent to νj; then relabel by 1, ..., 2n − 2 the remaining vertices (in
increasing order of “old” labels), and continue the step again, and so
on. From this it is also seen that any set of νj may arise. This proves
(i).

(ii) Let σ be a matching of ∆ (with labeled edges) which satisfies
condition (A) but not necessarily (B). If a1, a2 are consecutive edges
that are glued to consecutive edges b2, b1 in the opposite order, then
we may unite a1, a2 into a single edge a, and b2, b1 into b, and obtain
a 2n − 2-gon with a matching. Continuing so as long as we can, we
will arrive at a 2n− 2i-gon ∆σ with a new matching σ′, which satisfies
conditions (A) and (B). In ∆σ, each (j-th) pair of edges is obtained for

mj + 1 pairs of edges in ∆. Thus,
∑n−i

j=1mj = i. Furthermore, for any

(∆σ, σ
′) the collection of numbers m1, ...,mn−i defines (∆, σ) uniquely,

up to deciding which of the m1 + 1 edges constituting the first edge of
∆σ should be labeled by 1. Thus, each (∆σ, σ

′) arises in the number of
ways given by the formula ∑

m1,...,mn−i:
∑n−i
j=1 mj=i

(m1 + 1).

It is easy to show (check!) that this number is equal to

(
n
i

)
. This

proves (ii). �

The completion of the proof of Theorem 5.4 depends now on the
following computational lemma.

Lemma 5.15. Let ε(n), µ(n), λ(n), n ≥ 0, be sequences satisfying the
equations

ε(n) =
∑
i

(
2n
i

)
µ(n− i);

µ(n) =
∑
i

(
n
i

)
λ(n− i).

Assume also that ε(n) =
(

2n
n

)
f(n), where f is a polynomial such that

f(0) = 0. Then λ(0) = 0, λ(n) has finitely many nonzero values, and∑
n≥1

(−1)n−1λ(n)

2n
= f ′(0).
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Proof. Let us first consider any sequences ε(n), µ(n), and λ(n) linked
by the equations of the lemma. Let E(z), M(z), and L(z) be their
generating functions (i.e. E(z) =

∑
n≥0 ε(n)zn etc.). We claim that

E(z) =
1 +
√

1− 4z

2(1− 4z)
L

(
1−
√

1− 4z

2
√

1− 4z

)
.

To see this, it suffices to consider the case λi = δki for some k. In this
case,

E(z) =
∑
i,n

(
2n
i

)(
n− i
k

)
zn =

∑
p,q≥0

(
2p+ 2q

p

)(
q
k

)
zp+q.

But the function

Fr(z) :=
∑
p≥0

(
2p+ r
p

)
zp

equals

Fr(z) =
1√

1− 4z

(
1−
√

1− 4z

2z

)r
,

as may be easily seen by induction from the recursion

Fr = z−1(Fr−1 − Fr−2),

r ≥ 2. Substituting this in the formula for E(z), one gets (after trivial
simplifications)

E(z) =
1 +
√

1− 4z

2(1− 4z)

(
1−
√

1− 4z

2
√

1− 4z

)k
,

as desired.
Now assume that ε(n) satisfies the polynomiality condition. This

means that E(z) = P (z∂)|z=0
1√

1−4z
, where P is a polynomial with

vanishing constant term. To prove our claim, it suffices to consider the
case P (z) = (1 + a)z − 1, where a is a formal parameter (so P ′(0) =
log(1 + a)); indeed, the coefficients of this formal series are

(
z
j

)
, j ≥ 1,

which form a basis in the space of polynomials of z with vanishing
constant term. In this case we get

E(z) =
1√

1− 4(1 + a)z
− 1√

1− 4z
.

Hence,

L(u) =
1

1 + u

(
1√

1− 4au(1 + u)
− 1

)
.
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Therefore,∑
k

(−1)k−1λk
2k

=
1

2

∫ 0

−1

L(u)
du

u
=

1

2

∑
p≥1

(
2p
p

)
(−1)p−1ap

∫ 1

0

xp−1(1−x)p−1dx.

But
∫ 1

0
xp−1(1−x)p−1dx is an Euler Beta integral, and it equals (p−1)!2

(2p−1)!
.

Thus, ∑
k

(−1)k−1λk
2k

=
∑
p≥1

(−1)p−1a
p

p
= log(1 + a),

as desired. �

5.7. End of proof of Theorem 5.4. Now we finish the proof of
the Harer-Zagier theorem. Recall that using matrix integrals we have
proved the formula

(5.1) Pn(x) :=
∑

g

εg(n)xn+1−2g =
(2n)!

2nn!

∑
p≥0

(
n
p

)
2p
(

x
p+ 1

)
.

Let us set q := n− p. Then expression (5.1) takes the form

(5.2) Pn(x) =

(
2n
n

)∑
q≥0

2−q
(
n
q

)
n!

(n− q + 1)!
x(x− 1)...(x− n+ q).

We claim now that the coefficient of x−2g (g ≥ 1) in the polyno-

mial Pn(x)
xn+1 is of the form

(
2n
n

)
fg(n), where fg is a polynomial. Indeed,

contributions to the coefficient of x−2g come from terms with q ≤ 2g
only, so it suffices to check that each of these contributions is as stated.
This reduces to checking that the coefficients of the Laurent polyno-
mial Q(x, n) = (1 − 1

x
)...(1 − n

x
) are polynomials in n, which van-

ish at −1 (except, of course, the leading coefficient). To see this, let

Q(x, a) = Γ(x)
Γ(x−a)xa

(this equals to Q(x, n) if a = n). This function has

an asymptotic Taylor expansion in 1
x

as x → +∞ which is obtained
from the Stirling asymptotic expansion of Γ(x) given by (2.9), and it
is easy to show that the coefficients are polynomials in a. Moreover,
Q(x,−1) = 1, which implies the required statement.

Furthermore, we claim that fg(0) = 0: again, this follows from the
fact that the non-leading coefficients of the expansion of Q(x, a) vanish
at a = 0. But this is clear, since Q(x, 0) = 1.

Thus, we are in a situation where Lemma 5.15 can be applied. So it
remains to compute

∑
g≥1 f

′
g(0)x−2g. To do this, observe that the terms

with q > 1 do not contribute to f ′g(0), as they are given by polynomials
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of n that are divisible by n2. So we only need to consider q = 0 and
q = 1. For q = 1, the contribution is the value of

1
2x

(1− 1
x
)...(1− n

x
)

at n = 0, i.e. it is 1
2x

. For q = 0, the contribution is the derivative at

0 with respect to n of 1
n+1

(1− 1
x
)...(1− n

x
), i.e. it is

d
da
|a=0

Q(x,a)
a+1

= −1 + d
da
|a=0Q(x, a).

Thus, we have (asymptotically)∑
g≥1

f ′g(0)x−2g = 1
2x

+ d
da
|a=0Q(x, a) = 1

2x
+ Γ′(x)

Γ(x)
− log x

Now, the asymptotic expansion for Γ′/Γ given by (2.10) implies that

f ′g(0) = −B2g

2g
. This completes the proof.

Exercise 5.16. Prove Theorem 5.8 for g = 1.

Exercise 5.17. Let Γ(N) be the congruence subgroup of SL2(Z) which
consists of matrices equal to 1 modulo N .

(a) Show that Γ(N) is free for N ≥ 3. (Hint: consider the action of
Γ(N) on the upper half-plane). Show that Γ(2) is the direct product of
a free group Γ+(2) on two generators with Z/2Z.

(b) Find the number of generators of Γ(N), N ≥ 3 which generate it
without relations. (Hint: compute χ(Γ(N))).

Exercise 5.18. Let Γ be the group defined by the generators a, b, c with
defining relation ab = ba. Find the Euler characteristic of Γ.

Exercise 5.19. Consider a triangle ∆ in the hyperbolic plane H =
C+ with angles α = π

2
, β = π

3
, γ = π

7
, and let Γ be the subgroup

of PSL2(R) generated by rotations a, b, c around the vertices of ∆ by
angles 2α, 2β, 2γ respectively.

(i) Show that H/Γ is naturally homeomorphic to a sphere glued out
of two copies of ∆, which can be viewed as an orbifold with three points
with nontrivial stabilizers (orders 2,3,7).

(ii) Compute the Euler characteristic χ(Γ).
(iii) Show that the defining relations for Γ are

a2 = 1, b3 = 1, c7 = 1, abc = 1

(use an orbifold version of van Kampen’s theorem).
(iv) Construct a surjective homomorphism φ : Γ→ PSL2(F7).
(v) Show that Kerφ is torsion free and H/Kerφ is a compact Riemann

surface X of genus 3 with an action of PSL2(F7). Identify X with the
Klein quartic x3y + y3z + z3x = 0 in CP2.
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