
6. Matrix integrals and counting planar diagrams

6.1. The number of planar gluings. Let us return to the setting of
Section 4. Thus, we have a potential

U(x) =
x2

2
−
∑
j≥1

gj
xj

j

(with gj being formal parameters), and consider the matrix integral

ZN(~) = ~−
N2

2

∫
hN

e−TrU(A)dA.

Let ẐN(~) = ZN(~/N). We have seen that

lim
N→∞

log ẐN
N2

= W∞,

where W∞ is given by summation over planar fat graphs:

W∞ =
∑
n

∏
i

(gi~
i
2
−1)ni

∑
Γ̃∈G̃c(n)[0]

1

|Aut(Γ̃)|
.

In particular, the coefficient of
∏

i(gi~
i
2
−1)ni is the number of (orienta-

tion preserving) gluings of a fat graph of genus zero out of a collection of
fat flowers containing ni i-valent flowers for each i, divided by

∏
i i
nini!.

On the other hand, one can compute W∞ explicitly as a function of
gi by reducing the matrix integral to an integral over eigenvalues, and
then using a fundamental fact from the theory of random matrices:
the existence of an asymptotic distribution of eigenvalues in the limit
N → ∞. This approach allows one to obtain simple closed formulas
for the numbers of planar gluings, which are quite nontrivial and for
which direct combinatorial proofs were discovered much later.

To illustrate this method, we will restrict ourselves to the case of the
potential U(x) = x2

2
+ gx4 (so g4 = −4g and other gi = 0), and set

~ = 1. Then

W∞ =
∑
n≥1

cn
(−1)ngn

n!
,

where cn is a number of connected planar gluings of a set of n 4-valent
flowers. In other words, cn is the number of ways (up to isotopy) to
connect n “crosses” in the 2-sphere so that all crosses are connected
with each other, all the arms are used, and the connecting lines do not
intersect.

Exercise 6.1. Check by drawing pictures that c1 = 2, c2 = 36.
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Theorem 6.2. (Brézin, Itzykson, Parisi, Zuber, [BIPZ], 1978). One
has

cn = (12)n
(2n− 1)!

(n+ 2)!
.

The proof of this theorem (with some omissions) is given in the next
subsection.

6.2. Proof of Theorem 6.2. We follow the paper [BIPZ]. We will
assume that g is a positive real number, and compute the function
W∞(g) explicitly. The relevant matrix integral has the form

ẐN =

∫
hN

e−NTr( 1
2
A2+gA4)dA.

Passing to eigenvalues, we get

ẐN =
JN(g)

JN(0)
,

where

(6.1) JN(g) =

∫
RN
e−N( 1

2

∑
i λ

2
i+g

∑
i λ

4
i )
∏
i<j

(λi − λj)2dλ.

Thus, W∞(g) = E(g)− E(0), where E(g) = limN→∞N
−2 log JN(g).

Proposition 6.3. (Steepest descent principle) E(g) equals the leading
coefficient of the asymptotics as N → ∞ of the maximal value of the
logarithm of the integrand in (6.1).

The proposition says, essentially, that the integrand has a sufficiently
sharp maximum, so that the leading behavior of the integral can be
computed by the steepest descent formula. We note that we cannot
apply the steepest descent formula without explanations, since the in-
tegral is over a space whose dimension grows as the perturbation pa-
rameter 1/N goes to 0. In other words, it is necessary to do some
estimates which we will omit. We will just mention that for g = 0, this
result can be derived from the explicit evaluation of the integral using
Hermite polynomials (see §4). For the general case, we refer the reader
to the book [De].

The logarithm of the integrand

K(λ1, ..., λN) := −N(1
2

∑
i

λ2
i + g

∑
i

λ4
i ) + 2

∑
i<j

log |λi − λj|
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has a unique maximum, because it is concave (check it!). This maxi-
mum is found by equating the partial derivatives to zero. This yields

(6.2)
∑
j 6=i

1

λi − λj
= N(1

2
λi + 2gλ3

i ).

Let λ1 < λ2 < ... < λN be the unique (up to permutations) solution of
this system of equations.

Proposition 6.4. The normalized counting measures 1
N

∑
i δ(x − λi)

converge weakly to a measure µ(x) = f(x, g)dx, where f(x, g) is a
continuous function supported on a finite interval [−2a, 2a] and differ-
entiable on the interior of this interval.

For the proof we again refer the reader to [De] (p.132 and later). We
note that for g = 0, by Wigner’s semicircle law, a = 1 and f(x, 0) =
1

2π

√
4− x2; so f(x, g) = 1

2π

√
4− x2 +O(g).

Now our job will be to find the function f(x, g). Passing to the limit
in equation (6.2) (which requires justification that we will omit), we
get ∫ 2a

−2a

1

y − x
f(x, g)dx =

1

2
y + 2gy3, |y| ≤ 2a

where the integral is understood in the sense of principal value.
This is a linear integral equation on f(x, g), which can be solved in

a standard way. Namely, one considers the analytic function

F (y) =

∫ 2a

−2a

1

y − x
f(x, g)dx

for y in the complex plane but outside of the interval [−2a, 2a]. For
y ∈ [−2a, 2a], let F+(y), F−(y) denote the limits of F (y) from above
and below. Then by the Plemelj formula, the integral equation implies

1

2
(F+(y) + F−(y)) =

1

2
y + 2gy3.

On the other hand, F−(y) = F+(y). Hence,

ReF+(y) = ReF−(y) =
1

2
y + 2gy3.

Now set y := a(z + z−1). Then, as y runs through the exterior of
[−2a, 2a], z runs through the exterior of the unit circle. So the function
G(z) := F (y) is analytic on the outside of the unit circle, with decay
at infinity, and

ReG(z) =
1

2
a(z + z−1) + 2ga3(z + z−1)3
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when |z| = 1. This implies that G(z) is twice the sum of all negative
degree terms of this Laurent polynomial. In other words, we have

G(z) = 4ga3z−3 + (a+ 12ga3)z−1.

This yields

F (y) =
1

2
y + 2gy3 −

(
1

2
+ 4ga2 + 2gy2

)√
y2 − 4a2.

Now f(y, g) is found as the jump of F :

f(y, g) =
1

π

(
1

2
+ 4ga2 + 2gy2

)√
4a2 − y2.

It remains to find a in terms of g. We have yF (y) → 1, y → ∞ (as∫
f(x, g)dx = 1), hence zG(z)→ 1/a, z →∞. This yields

1

a
= a+ 12ga3,

or

12ga4 + a2 − 1 = 0.

This allows one to determine a uniquely:

a =

(
(1 + 48g)1/2 − 1

24g

)1/2

.

Now let us calculate E(g). It follows from the above that

E(g) =

∫ 2a

−2a

∫ 2a

−2a

log |x−y|f(x, g)f(y, g)dxdy−
∫ 2a

−2a

(1
2
x2+gx4)f(x, g)dx.

On the other hand, let us integrate the integral equation defining f(x, g)
with respect to y (from 0 to u). Then we get

2

∫ 2a

−2a

(log |x− u| − log |x|)f(x, g)dx = 1
2
u2 + gu4.

Substituting this into the expression for E(g), we get

E(g) =

∫ 2a

−2a

(log |u| − 1
4
u2 − 1

2
gu4)f(u, g)du.

Since f(u, g) is known, this integral can be computed. In fact, can be
expressed via elementary functions, and after calculations we get

E(g)− E(0) = log a− 1

24
(a2 − 1)(9− a2).
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Substituting here the expression for a, after a calculation one finally
gets:

E(g)− E(0) =
∞∑
k=1

(−12g)k
(2k − 1)!

k!(k − 2)!
.

This implies the required formula for cn.
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