
7. Quantum mechanics

So far we have considered quantum field theory with 0-dimensional
spacetime (to make a joke, one may say that the dimension of the space
is −1). In this section, we will move closer to actual physics: we will
consider 1-dimensional spacetime, i.e. the dimension of the space is 0.
This does not mean that we will study motion in a 0-dimensional space
(which would be really a pity) but just means that we will consider
only point-like quantum objects (particles) and not extended quantum
objects (fields). In other words, we will be in the realm of quantum
mechanics.

7.1. The path integral in quantum mechanics. Let U(q) be a
smooth function on the real line (the potential). We will assume that
U(0) = 0, U ′(0) = 0, and U ′′(0) = m2, where m > 0.

Remark 7.1. In quantum field theory the parameter m in the po-
tential is called the mass parameter. To be more precise, in classical
mechanics it has the meaning of frequency ω of oscillations. However,
in quantum theory thanks to Einstein frequency is identified with en-
ergy (E = ~ω/2π), while in relativisitic theory energy is identified with
mass (again thanks to Einstein, E = mc2).

We want to construct the theory of a quantum particle moving in
the potential field U(q). According to what we discussed before, this
means that we want to give sense to and to evaluate the normalized
correlation functions

〈q(t1) . . . q(tn)〉 :=

∫
q(t1) . . . q(tn)e

iS(q)
~ Dq∫

e
iS(q)

~ Dq
,

where S(q) =
∫
L(q)dt, and L(q) = q̇2

2
− U(q).

As we discussed, such integrals cannot be handled rigorously by
means of measure theory if ~ is a positive number; so we will only
define these path integrals “in perturbation theory”, i.e. as formal
series in ~.

Before giving this (fully rigorous) definition, we will explain the mo-
tivation behind it. We warn the reader that this explanation is heuristic
and involves steps which are mathematically non-rigorous (or “formal”
in the language of physicists).

7.2. Wick rotation. In Section 1 we discussed path integrals with
imaginary exponential (quantum mechanics), as well as real exponen-
tial (Brownian motion). If ~ is a number, then the integrals with imag-
inary exponential cannot be defined measure-theoretically. Therefore,
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people study integrals with real exponential (which can be rigorously
defined), and then perform a special analytic continuation procedure
called the Wick rotation.

In our formal setting (~ is a formal parameter), one can actually
define the integrals in both the real and the imaginary case. Still,
the real case is a bit easier, and thus the Wick rotation is still useful.
Besides, the Wick rotation is very important conceptually. Therefore,
while it is not technically necessary, we start with introducing the Wick
rotation here.

Namely, let us denote 〈q(t1)...q(tn)〉 by GMn (t1, ..., tn), and “formally”
make a change of variable τ = it in the formula for GMn (t1, ..., tn). Let
q(t) := q∗(τ). Then, taking into account that dτ = idt, dq

dt
= idq∗

dτ
, we

get

GMn (t1, ..., tn) =

∫
q∗(τ1) . . . q∗(τn)e−

1
~
∫

( 1
2

( dq∗
dτ

)2+U(q∗))dτDq∗∫
e−

1
~
∫

( 1
2

( dq∗
dτ

)2+U(q∗))dτDq∗
.

This shows that

GMn (t1, ..., tn) = GEn (it1, ..., itn),

where

GEn (t1, ..., tn) :=

∫
q(t1) . . . q(tn)e−

SE(q)

~ Dq∫
e−

SE(q)

~ Dq
.

with SE(q) =
∫
LE(q)dτ , and LE(q) = q̇2

2
+ U(q) (i.e. LE is obtained

from L by replacing U with −U).
This manipulation certainly does not make rigorous sense, but it

motivates the following definition.

Definition 7.2. The function GMn (t1, ..., tn) (ti ∈ R) is the analytic
continuation of the function GEn (τ1, ..., τn) from the point (t1, ..., tn) to
the point (it1, ..., itn) along the path θ 7→ eiθ(t1, ..., tn), 0 ≤ θ ≤ π/2.

Of course, this definition will only make sense if we define the func-
tion GEn (t1, ..., tn) and show that it admits the required analytic con-
tinuation. This will be done below.

Remark 7.3. (On the terminology.) The function GMn (t1, ..., tn) is
called the Minkowskian (time ordered) correlation function, while the
function GEn (t1, ..., tn) is called the Euclidean correlation function (hence
the notation). This terminology will be explained later, when we con-
sider relativistic field theory.

From now on, we will mostly deal with Euclidean correlation func-
tions, and therefore will omit the superscript E when there is no danger
of confusion.
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7.3. Definition of Euclidean correlation functions. Now our job
is to define the Euclidean correlation functions Gn(t1, ..., tn). Our strat-
egy (which will also be used in field theory) will be as follows. Recall
that if our integrals were finite dimensional then by Feynman’s theo-
rem the expansion of the correlation functions in ~ would be given by
a sum of amplitudes of Feynman diagrams. So, in the infinite dimen-
sional case, we will use the sum over Feynman diagrams as a definition
of correlation functions.

More specifically, because of the conditions on U we have an action
functional without constant and linear terms in q, so that the correla-
tion function Gn(t1, ..., tn) should be given by the sum

(7.1) Gn(t1, ..., tn) =
∑

Γ∈G∗≥3(n)

~b(Γ)

|Aut(Γ)|
FΓ(`1, . . . , `n),

where G∗≥3(n) is defined in Remark 3.7. Thus, we should make sense
of (=define) the amplitudes FΓ in our situation. For this purpose, we
need to define the following objects.

1. The space V .
2. The form B on V which defines B−1 on V ∗.
3. The tensors corresponding to non-quadratic terms in the action.
4. The covectors `i.
It is clear how to define these objects naturally. Namely, V should

be a space of functions on R with some decay conditions. There are
many choices for V , which do not affect the final result; for instance,
a good choice (which we will make) is the space C∞0 (R) of compactly
supported smooth functions on R. Thus V ∗ is the space of generalized
functions on R. Note that V is equipped with the inner product (f, g) =∫
R f(x)g(x)dx.
The form B, by analogy with the finite dimensional case, should be

twice the quadratic part of the action. In other words,

B(q, q) =

∫
(q̇2 +m2q2)dt = (Aq, q),

where A is the operator

A = − d2

dt2
+m2.

This means that B−1(f, f) = (A−1f, f).
The operator A−1 is an integral operator, with kernel

K(x, y) = G(x− y),
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where G(x) is the Green’s function of A, i.e. the fundamental (decaying
at infinity) solution of the differential equation

(AG)(x) = δ(x).

It is straightforward to find that

G(x) =
e−m|x|

2m
.

(thus B−1 is actually defined not on the whole V ∗ but on a dense
subspace of V ∗).

Remark 7.4. Here we already see the usefulness of the Wick rotation.
Namely, the spectrum of A (interpreted as usual as a self-adjoint un-
bounded operator on L2(R)) is [m2,+∞), so it is invertible and the
inverse is bounded. However, if we did not make a Wick rotation,
we would deal with the operator A′ = − d2

dt2
−m2, whose spectrum is

[−m2,+∞), i.e. contains 0, so this operator does not have a bounded
inverse.

To make sense of the cubic and higher terms in the action as tensors,
consider the decomposition of U in the (asymptotic) Taylor series at
x = 0:

U(x) =
m2x2

2
−
∑
n≥3

gnx
n

n!
.

This shows that cubic and higher terms in the action have the form

Br(q, q, , ..., q) =

∫
qr(t)dt.

Thus Br(q1, ..., qr) is an element of (SrV )∗ given by the generalized
function δt1=...=tr (the delta function of the diagonal).

Finally, the functionals `i are given by `i(q) = q(ti), so `i = δ(t− ti).
This leads to the following Feynman rules of defining the amplitude

of a diagram Γ.
1. To the i-th external vertex of Γ assign the number ti.
2. To each internal vertex j of Γ, assign a variable sj.
3. On each internal edge connecting vertices j and j′, write the

Green’s function G(sj − sj′).
4. On each external edge connecting i and j write G(ti − sj).
5. On each external edge connecting i and i′ write G(ti − ti′).
6. Let GΓ(t, s) be the product of all these functions.
7. Let FΓ(`1, ..., `n) :=

∏
j gv(j)

∫
GΓ(t, s)ds, where v(j) is the valency

of j.
We are finally able to give the following definition.
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Definition 7.5. The function Gn(t1, ..., tn) is defined by formula (7.1).

Remark 7.6. Note that the integrals defining FΓ are convergent since
the integrand always decays exponentially at infinity. It is, however,
crucial that we consider only graphs without components having no ex-
ternal vertices; for example, if Γ has a single 4-valent vertex connected
to itself by two loops (Fig.21) then the amplitude integral involves∫
RG(0)2ds, which is obviously divergent.

With this definition, the function Gn(t1, ..., tn) is a Laurent series in
~ whose coefficients are symmetric functions of t1, ..., tn given by linear
combinations of explicit (and convergent) finite dimensional integrals.
Furthermore, it is easy to see that these integrals are in fact computable
in elementary functions, i.e. are (in the region t1 ≥ ... ≥ tn) linear
combinations of products of functions of the form tri e

ati . This implies
the existence of the analytic continuation required in the Wick rotation
procedure.

Figure 21.

Remark 7.7. As in the finite dimensional case, an alternative setting
for making this definition is to assume that gi are formal parameters.
In this case, ~ can be given a numerical value, e.g. ~ = 1, and the
function Gn will be a well defined power series in g3, g4, ....

As an example consider a free massive theory, i.e., a harmonic oscil-

lator: U(q) = m2q2

2
. In this case, there are no internal vertices, hence

we get

Proposition 7.8. (Wick’s theorem) One has Gn(t1, ..., tn) = 0 if n is
odd, and

G2k(t1, ..., t2k) = ~k
∑
σ∈Πk

∏
i∈{1,...,2k}/σ

G(ti − tσ(i)).

In particular, G2(t1, t2) = ~G(t1 − t2). In other words, G2(t1, t2) is
(proportional to) the Green’s function. Motivated by this, physicists
often refer to all correlation functions of a quantum field theory as
Green’s functions.
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t1 t2

Figure 22.

Example 7.9. Consider the potential U(q) = m2q2

2
− gq4

24
, and set ~ = 1.

In this case, let us calculate the 2-point correlation function modulo g2.
In other words, we have to compute the coefficient of g in this function.
Thus we have to consider Feynman diagrams with two external edges
and one internal vertex. Such a diagram Γ is unique: it consists of one
edge with a loop attached in the middle (Fig. 22). This diagram has
automorphism group Z/2. The amplitude of this diagram is

FΓ = g

∫
R
G(s, t1)G(s, t2)G(s, s)ds =

g

8m3

∫
R
e−m(|s−t1|+|s−t2|)ds.

Because of symmetry in t1 and t2, we may assume that t1 ≥ t2. Split-
ting the integral in a sum of three integrals, over (−∞, t2], [t2, t1], and
[t1,∞), respectively we get:

FΓ =
g

8m3

(
2

∫ ∞
0

e−m(2s+|t1−t2|)ds+ |t1 − t2|e−m|t1−t2|
)

=

g

8m4
e−m|t1−t2|(1 +m|t1 − t2|).

Thus
G2(t1, t2) = G̃(t1 − t2),

where
G̃(t) := 1

2m
e−m|t| + g

16m4 e
−m|t|(1 +m|t|) +O(g2).

This expression is called the 1-loop approximation to the 2-point func-
tion, because it comes from 0-loop and 1-loop Feynman diagrams.

Remark 7.10. Here we are considering quantum mechanics of a sin-
gle 1-dimensional particle. However, everything generalizes without
difficulty to the case of an n-dimensional particle or system of parti-
cles (i.e., to path integrals over the space of vector-valued, rather than
scalar, functions of one variable). Indeed, if q takes values in a Eu-
clidean space V then the quadratic part of the Lagrangian is of the
form 1

2
(q̇2 −M(q)), where M is a positive definite quadratic form on

V . Diagonalizing M , we may assume that the quadratic part of the
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Lagrangian looks like 1
2

∑
i(q̇i

2 − m2
i q

2
i ), which corresponds to a sys-

tem of independent harmonic oscillators. Thus in quantum theory the

propagator will be the diagonal matrix with diagonal entries e−mi|t−s|

2mi
,

and the correlation functions can be defined by the usual Feynman
diagram procedure.

7.4. Connected correlation functions. Let Gcn(t1, ..., tn) be the con-
nected correlation (or Green) functions, defined by the sum of the same
amplitudes as Gn(t1, ..., tn) but taken over connected Feynman diagrams
only. It is clear that

Gn(t1, ..., tn) =
∑

{1,...,n}=S1t...tSk

∏
Gc|Si|(tj; j ∈ Si).

For example, G2(t1, t2) = Gc2(t1, t2) + Gc1(t1)Gc1(t2), etc. Thus, to know
the correlation functions, it is sufficient to know the connected corre-
lation functions.

Example 7.11. In a free theory (U = m2q2

2
, the harmonic oscillator),

all connected Green’s functions except G2 vanish.

t1 t3

t2

t4

Figure 23.

Example 7.12. Let us compute the connected 4-point function in the

theory associated to the quartic potential U = m2q2

2
− gq4

4
as above, mod-

ulo g2. This means, we should compute the contribution of connected
Feynman diagrams with one internal vertex and 4 external edges. Such
a diagram Γ is unique – it is the cross (with one internal vertex), Fig.
23. This diagram has no nontrivial automorphisms. Thus,

Gc4(t1, t2, t3, t4) = g

∫
R
G(t1 − s)G(t2 − s)G(t3 − s)G(t4 − s)ds+O(g2).

It is elementary to compute this integral; we leave it as an exercise.
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7.5. The clustering property. Note that the Green’s function G(t)
goes to zero at infinity. This implies the following clustering property
of the correlation functions of the free theory:

lim
z→∞
Gn(t1, ..., tr, tr+1 + z, ..., tn + z) = Gr(t1, ..., tr)Gn−r(tr+1...tn).

Moreover, it is easy to show that the same is true in the interacting
theory (i.e. with potential) in each degree with respect to ~ (check it!).
The clustering property can be more simply expressed by the equation

lim
z→∞
Gcn(t1, ..., tr, tr+1 + z, ..., tn + z) = 0.

This property has a physical interpretation: processes distant from
each other are almost statistically independent. Thus it can be viewed
as a necessary condition of a quantum field theory to be “physically
meaningful”.

Remark 7.13. Nevertheless, there exist theories (e.g. so called topo-
logical quantum field theories) which do not satisfy the clustering prop-
erty but are interesting both form a physical and mathematical point
of view (see Subsection 10.2 below).

7.6. The partition function. Let J(t)dt be a compactly supported
measure on the real line. Consider the “partition function with external
current J”, which is the formal expression

Z(J) =

∫
e
−SE(q)+(J,q)

~ Dq.

Then we have a formal equality

Z(J)

Z(0)
=
∑
n

~−n

n!

∫
Rn
Gn(t1, ..., tn)J(t1)...J(tn)dt1...dtn,

which, as before, we will use as the definition of Z(J)/Z(0). So the
knowledge of Z(J)/Z(0) is equivalent to the knowledge of all the Green’s
functions (in other words, Z(J)/Z(0) is their generating function). Fur-
thermore, as in the finite dimensional case, we have

Proposition 7.14. One has

W (J) := log
Z(J)

Z(0)
=
∑
n

~−n

n!

∫
Gcn(t1, ..., tn)J(t1)...J(tn)dt1...dtn

(i.e. W is the generating function of connected Green’s functions)

The proof of this proposition is the same as in the finite dimensional
case.
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Remark 7.15. The statement of the proposition is equivalent to the
relation between usual and connected Green’s functions given in the
previous subsection.

Remark 7.16. The fact that we can only define amplitudes of graphs
whose all components have at least one 1-valent vertex (see above)
means that we actually cannot define either Z(0) or Z(J) but can only
define their ratio Z(J)/Z(0).

Like in the finite dimensional case, we have an expansion

W (J) = ~−1W0(J) +W1(J) + ~W2(J) + ...,

where Wj are the j-loop contributions (in particular, W0 is given by
a sum over trees). Furthermore, we have explicit formulas for W0 and
W1, analogously to the finite dimensional case.

Proposition 7.17. One has

W0(J) = −SE(qJ) + (qJ , J),

where qJ is the extremal of the functional SJE(q) := SE(q)−(q, J) which
decays at infinity. Furthermore,

W1(J) = −1

2
log detLJ ,

where LJ is the linear operator on V such that

d2SJE(qJ)(f1, f2) = d2S0
E(0)(LJf1, f2).

The proof of this proposition, in particular, involves showing that qJ
is well defined and that detLJ exists. It is analogous to the proof of the
same result in the finite dimensional case which is given in Subsection
3.7 (to be precise, we gave a proof only in the 0-loop case; but in the
1-loop case, the proof is similar). Therefore we will not give this proof;
rather, we will illustrate the statement by an example.

Example 7.18. Let U be the above quartic potential m2q2

2
+ gq4

2
(in

which for convenience we change the sign and normalization of the
quartic term) and J(t) = aδ(t). In this case,

SJE(q) =

∫
( q̇

2

2
+ U(q))dt− aq(0).

The Euler-Lagrange equation has the form

q̈ = m2q + 2gq3 − aδ(t).
Thus, the function qJ is continuously glued from two solutions q+, q−
of the nonlinear differential equation

q̈ = m2q + 2gq3
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on (−∞, 0] and [0,∞), with jump of derivative at 0 equal to −a.
The solutions q+, q− are required to decay at infinity, so they must

be solutions of zero energy:

E =
˙q±

2

2
− U(q±) = 0.

Thus, by the standard formula for solutions of Newton’s equation, they
are defined by the equality

t− t± =

∫
dq√
2U(q)

=

∫
dq

mq
√

1 + gq2

m2

=
1

2m
log

√
1 + gq2

m2 − 1√
1 + gq2

m2 + 1
.

After a calculation one gets

qJ(t) =
2mg−

1
2

C−1em|t| − Ce−m|t|
,

where C is the solution of the equation

C(1 + C2)

(1− C2)2
=
ag

1
2

4m2

which is given by a power series in a with zero constant term. From this
it is elementary (but somewhat lengthy) to compute W0 = −SJE(qJ).

Now, the operator LJ is given by the formula

LJ = 1 +
gA−1 ◦ qJ(t)2

2
,

where A = − d2

dt2
+m2. Thus detLJ makes sense. Indeed, the operator

A−1 ◦ qJ(t)2 is an integral operator given by the kernel

KJ(x, y) :=
e−m|x−y|qJ(y)2

2m
,

which decays exponentially at infinity; hence the determinant of the

operator 1 + gA−1◦qJ (t)2

2
is well defined.

Remark 7.19. In these computations, g, a were formal variables, but
the above computations in fact make sense for real numerical values of
these variables as long as ga2 +m2 > 0.

7.7. 1-particle irreducible Green’s functions. Let G1PI
n (t1, ..., tn)

denote 1-particle irreducible Green’s functions, i.e. those defined by
the sum of the same amplitudes as the usual Green’s functions, but
taken only over 1-particle irreducible Feynman graphs. Define also the
amputated 1-particle irreducible Green’s function: G1PIa

n := A⊗nG1PI
n
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(it is defined by the same sum of amplitudes, except that instead of
G(ti − sj) for external edges, we write δ(ti − sj)).

Let Seff(q) be the generating function of G1PIa
n i.e.,

Seff(q) =
∑
n

~−n

n!

∫
G1PIa
n (t1, ..., tn)q(t1)...q(tn)dt1...dtn.

Proposition 7.20. The function W (J) = log(Z(J)/Z(0)) is the Le-
gendre transform of Seff(q), i.e. it equals −Seff(q̃J) + (J, q̃J), where q̃J
is the extremal of −Seff(q) + (J, q) decaying at infinity.

The proof of this proposition is the same as in the finite dimensional
case. The proposition shows that in order to know the Green’s func-
tions, it “suffices” to know amputated 1-particle irreducible Green’s
functions (the generating function of usual Green’s functions can be
reconstructed from that for 1PI Green’s functions by taking the Le-
gendre transform and exponentiation). Which is a good news, since
there are a lot fewer 1PI diagrams than general connected diagrams.

7.8. Momentum space integration. We saw that the amplitude of
a Feynman diagram is given by an integral over the space of dimension
equal to the number of internal vertices. This is sometimes inconve-
nient, since even for tree diagrams such integrals can be rather compli-
cated. However, it turns out that if one passes to Fourier transforms
then Feynman integrals simplify and in particular the number of inte-
grations for a connected diagram becomes equal to the number of loops
(so for tree diagrams we have no integrations at all).

Namely, we will proceed as follows. Instead of the time variable
t we will consider the dual energy variable E. A function q(t) with
compact support will be replaced by its Fourier transform q̂(E). Then,
by Plancherel’s theorem, for real functions q1, q2, we have

(q1, q2) =

∫
R
q1(t)q2(t)dt =

∫
R
q̂1(E)q̂2(E)dE =

∫
R
q̂1(E)q̂2(−E)dE.

This implies that the propagator is given by

B−1(f, f) =

∫
R

1

E2 +m2
f̂(E)f̂(−E)dE.

The vertex tensors standing at k-valent vertices were δs1=...=sk , so they
will be replaced by δQ1+...+Qk=0, where Qi are dual variables to si.

Remark 7.21. (On terminology) Physicists refer to the time variables
ti, sj as position variables, and to energy variables Ei, Qk as momentum
variables, since in relativistic mechanics (which is the setting we will
deal with when we study field theory) there is no distinction between

92



time and position and between energy and momentum (due to the
action of the Lorentz group).

This shows that the Feynman rules “in momentum space” for a given
connected Feynman diagram Γ with n external vertices are as follows.

1. Orient the diagram Γ, so that all external edges are oriented
inwards.

2. Assign variables Ei to external edges, and variables Qj to inter-
nal ones. These variables are subject to the linear equations of “the
first Kirchhoff law”: at every internal vertex, the sum of the variables
corresponding to the incoming edges equals the sum of those corre-
sponding to the outgoing edges. Let Y (E) be the space of solutions Q
of these equations (it depends on Γ, but we will not write the depen-
dence explicitly). It is easy to show that this space is nonempty only
if
∑

iEi = 0, and in that case dimY (E) equals the number of loops of
Γ (show this!).

3. On each external edge, write 1
E2
i +m2 , and on each internal edge,

write 1
Q2
k+m2 . Let φΓ(E,Q) be the product of all these functions.

4. Define the momentum space amplitude of Γ to be the distribution

F̂Γ(E) :

F̂Γ(E1, ..., En) =
∏
j

gv(j)

∫
Y (E)

φΓ(E,Q)dQ · δ(E1 + ...+ En)dE,

supported on the hyperplane
∑

iEi = 0. It is clear that this distribu-
tion is independent on the orientation of Γ.

Remark 7.22. Here we must specify the normalization of the (translation-
invariant) Lebesgue measure dQ on the space Y (E). It is defined in
such a way that the volume of Y (E)/YZ(0) is 1, where YZ(0) is the set
of integer elements in Y (0). So if T ⊂ Γ is a spanning tree then in the
coordinates {Qe, e /∈ T} on Y (E), we have dQ =

∏
e/∈T dQe.

Now we have

Proposition 7.23. The Fourier transform of the function FΓ(δt1 , ..., δtn)

is F̂Γ(E1, ..., En). Hence, the Fourier transform of the connected Green’s
function is

(7.2) Ĝcn(E1, ..., En) =
∑

Γ∈G∗≥3(n)

~b(Γ)

|Aut(Γ)|
F̂Γ(E1, . . . , En).

The proof of the proposition is straightforward.
To illustrate the proposition, consider an example.
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Example 7.24. The connected 4-point function for the quartic poten-
tial modulo g2 in momentum space looks like:

Ĝc4(E1, E2, E3, E4) = g
4∏
i=1

1

E2
i +m2

δ(
∑
i

Ei)dE +O(g2).

1

2

3

4

5 6
E1

E2

E3

E4

Q

E1 + E2 −Q

Γ.

Figure 24.

Example 7.25. Let us compute the 1PI 4-point function in the same
problem, but now modulo g3. Thus, in addition to the above, we
need to compute the g2 coefficient, which comes from 1-loop diagrams.
There are three such diagrams, differing by permutation of external
edges. One of these diagrams is as follows: it has external vertices
1, 2, 3, 4 and internal ones 5, 6 such that 1, 2 are connected to 5, 3, 4 to
6, and 5 and 6 are connected by two edges (Fig.24). This diagram has
the symmetry group Z/2, so its contribution is

g2

2

(∫
R

dQ

(Q2 +m2)((E1 + E2 −Q)2 +m2)

) 4∏
i=1

1

E2
i +m2

δ(
∑
i

Ei)dE.

The integral inside is easy to compute, for example, by residues. This
yields

Ĝc4(E1, E2, E3, E4) =

g

4∏
i=1

1

E2
i +m2

(
1 +

πg

m

4∑
i=2

1

(E1 + Ei)2 + 4m2

)
δ(
∑
i

Ei)dE +O(g3)

(this is symmetric in the E1, E2, E3, E4 since when
∑

iEi = 0 then for
distinct i, j, k, ` one has (Ei + Ej)

2 = (Ek + E`)
2).

7.9. The Wick rotation in momentum space. To obtain the cor-
relation functions of quantum mechanics, we should, after computing
them in the Euclidean setting, Wick rotate them back to the Minkowski
setting. Let us do it at the level of Feynman integrals in momentum
space. (We could do it in position space as well, but it is instructive for
the future to do it in momentum space, since in higher dimensional field
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theory which we will discuss later, the momentum space representation
is more convenient).

Consider the Euclidean propagator

1

E2 +m2
=

∫
R
G(t)eiEtdt,

where G is the Green’s function. When we do analytic continuation
back to the Minkowski setting, we must replace in the correlation func-
tions the time variable t with eiθt, where θ varies from 0 to π

2
. In

particular, the Green’s function G(t) must be replaced by G(eiθt). So
we must consider∫

R
G(eiθt)eiEtdt = e−iθ

∫
R
G(t)eie

−iθEtdt =
e−iθ

e−2iθE2 +m2
.

As θ → π
2
, this function tends (as a distribution) to the function

limε→0+
i

E2−m2+iε
. For brevity the limit sign is usually dropped and

this distribution is written as i
E2−m2+iε

.
We see that in order to compute the correlation functions in momen-

tum space in the Minkowski setting, we should use the same Feynman
rules as in the Euclidean setting except that the propagator put on the
edges should be

i

E2 −m2 + iε
.

For instance, the contribution of the diagram in Fig.24 is

−g
2

2

(∫
R

dQ

(Q2 −m2 + iε)((E1 + E2 −Q)2 −m2 + iε)

) 4∏
j=1

1

E2
j −m2 + iε

δ(
∑
i

Ej)dE.

7.10. Quantum mechanics on the circle. It is reasonable (at least
mathematically) to consider Euclidean quantum mechanical path in-
tegrals in the case when the time axis has been replaced with a circle
of length L, i.e. t ∈ R/LZ (this corresponds to a Brownian particle
in a potential field conditioned to return to the original position in a
certain time L). In this case, the theory is the same, except the Green’s
function G(t) is replaced by the periodic solution GL(t) of the equation

(− d2

dt2
+m2)f = δ(t) on the circle. This solution has the form

(7.3) GL(t) =
∑
k∈Z

G(t− kL) =
e−m(t−L

2
) + e−m(L

2
−t)

2m(e
mL
2 − e−mL2 )

, 0 ≤ t ≤ L.

We note that in the case of a circle, there is no problem with graphs
without external edges (as integral over the circle of a constant function
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is convergent), and hence one may define not only correlation functions
(i.e. Z(J)/Z(0)), but also Z(0) itself. Namely, let

U(q) =
m2q2

2
+
∑
n≥3

gnq
n

n!
,

and let m2 = m2
0 + g2 (where gi are formal parameters). Then we can

make sense of the ratio Zm0,g,L(0)/Zm0,0,L(0) (where Zm,g,L(0) denotes
the partition function for the specified values of parameters; from now
on the argument 0 will be dropped). Indeed, this ratio is defined by
the formula

Zm0,g,L

Zm0,0,L

=
∑

Γ∈G≥2(0)

~b(Γ)

|Aut(Γ)|
FΓ

(where G≥2(0) is the set of Feynman graphs without external vertices
and all vertices of valency ≥ 2), which is a well-defined expression.

It is instructive to compute this expression in the case

g2 = a, g3 = g4 = ... = 0.

In this case, we have only 2-valent vertices, so the only connected
Feynman diagrams are N -gons, which are 1-loop. Hence,

log
Zm0,g,L

Zm0,0,L

= W1 = −1

2
log detM,

where

M = 1 + a(− d2

dt2
+m2

0)−1.

This determinant may be computed by looking at the eigenvalues.
Namely, the eigenfunctions of − d2

dt2
+ m2

0 in the space C∞(R/LZ) are

e
2πint
L , with eigenvalues 4π2n2

L2 +m2
0. So,

detM =
∏
n∈Z

(
1 +

a
4π2n2

L2 +m2
0

)
.

Hence, using the Euler product formula

sinh(z) = z
∏
n≥1

(
1 +

z2

π2n2

)
,

we get

Zm0,g,L

Zm0,0,L

=
sinh(m0L

2
)

sinh(mL
2

)
.

(Double-check this using summation over Feynman diagrams!)
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Remark 7.26. More informally speaking, we see that the partition

function Z for the theory with U = m2q2

2
has the form C

sinh(mL
2

)
, where

C is a constant of our choice. Our choice from now on will be C = 1
2
;

we will see later (in Example 8.25) why such a choice is preferable.

7.11. The massless case. Consider now the massless case, m = 0. In
this case the propagator should be obtained by inverting the operator
− d2

dt2
, i.e. it should be the integral operator with kernel G(t−s), where

G(t) is an even function satisfying the differential equation

−G′′(t) = δ(t).

There is a 1-parameter family of such solutions,

G(t) = −1

2
|t|+ C.

Using this function (for any choice of C), one may define the corre-
lation functions of the free theory by the Wick formula.

Note that the function G does not decay at infinity. Therefore, this
theory will not satisfy the clustering property (i.e. is not “physically
meaningful”).

We will also have difficulties in defining the corresponding interact-
ing theory (i.e. one with a non-quadratic potential), as the integrals
defining the amplitudes of Feynman diagrams will diverge. Such di-
vergences are called infrared divergences, since they are caused by the
failure of the integrand to decay at large times (or, in momentum space,
its failure to be regular at low frequencies).

7.12. Circle-valued quantum mechanics. Consider now the the-
ory with the same Lagrangian in which q(t) takes values in the circle
of radius r, R/2πrZ (the “sigma-model”). We can do this at least

classically, since the Lagrangian q̇2

2
makes sense in this case.

Let us define the corresponding quantum theory. The main differ-
ence from the line-valued case is that since q(t) is circle-valued, we
should consider not the usual correlators 〈q(t1)...q(tn)〉, but rather cor-

relation functions of exponentials 〈e
ip1q(t1)

r ...e
ipnq(tn)

r 〉, where pj are in-
tegers. They should be defined by the path integral

(7.4)

∫
e
ip1q(t1)

r ...e
ipnq(tn)

r e−
S(q)
~ Dq,

where S(q) := 1
2

∫
q̇2dt and

∫
e−

S(q)
~ Dq is agreed to be 1. Note that

it suffices to consider only the case
∑

j pj = 0, otherwise the group of
translations along the circle acts nontrivially on the integrand, hence
under any reasonable definition the integral should be zero.
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Now let us define the integral (7.4). Since the integral is invariant
under shifts along the target circle, we may as well imagine that we
are integrating over q : R → R with q(0) = 0. Now let us use the
finite-dimensional analogy. Following this analogy, by completing the
square we would get∫

e
ip1q(t1)

r ...e
ipnq(tn)

r e−
S(q)
~ Dq = e−

~
2r2

B−1(
∑
j pjq(tj),

∑
j pjq(tj)) =

e−
~

2r2

∑
j,` p`pjG(t`−tj) = e

~
2r2

∑
`<j p`pj |t`−tj |,

where B(q, q) :=
∫
q̇2dt. Thus, it is natural to define the correlators by

the formula

〈e
ip1q(t1)

r ...e
ipnq(tk)

r 〉 = e
~

2r2

∑
`<j p`pj |tl−tj |.

We note that this theory, unlike the line-valued one, does satisfy the
clustering property. Indeed, if

∑
pj = 0 (as we assumed), then (as-

suming t1 ≥ t2 ≥ ... ≥ tn), we have

∑
`<j

p`pj(t` − tj) =
n−1∑
j=1

(tj − tj+1)(pj+1 + ...+ pn)(p1 + ...+ pj) =

−
∑
j

(tj − tj+1)(p1 + ...+ pj)
2,

so the clustering property follows from the fact that (p1 + ...+pj)
2 ≥ 0.

7.13. Massless quantum mechanics on the circle. Consider now

the theory with Lagrangian q̇2

2
, where q is a function on the circle of

length L. In this case, according to the Feynman yoga, we must in-
vert the operator − d2

dt2
on the circle R/LZ, or equivalently solve the

differential equation −G′′(t) = δ(t). Here we run into trouble: the

operator − d2

dt2
is not invertible, since it has an eigenfunction 1 with

eigenvalue 0; correspondingly, the differential equation in question has
no solutions, as

∫
G′′dt must be zero, so −G′′(t) cannot equal δ(t)

(one may say that the quadratic form in the exponential is degener-
ate, and therefore the Gaussian integral turns out to be meaningless).
This problem can be resolved by the following technique of “killing
the zero mode”. Namely, let us invert the operator − d2

dt2
on the space

{q ∈ C∞(R/LZ) :
∫
qdt = 0} (this may be interpreted as integration

over this codimension one subspace, on which the quadratic form is
non-degenerate). This means that we must find the solution of the
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differential equation −G′′(t) = δ(t) − 1
L

, such that
∫
Gdt = 0. Such

solution is indeed unique, and it equals

(7.5) G(t) =
(t− L

2
)2

2L
− L

24
,

t ∈ [0, L]. Thus, for example 〈q(0)2〉 = L
12

.
Higher correlation functions are defined in the usual way. Moreover,

one can define the theory with an arbitrary potential using the standard
procedure with Feynman diagrams.

7.14. Circle-valued quantum mechanics on the circle. Finally,
let us consider the circle-valued version of the same theory. Thus, our
integration variable is a map q : R/LZ → R/2πrZ. So we have a
new feature - there are different homotopy classes of maps labeled by
degree. Let us first consider integration over degree zero maps. Then
we should argue in the same way as in the case t ∈ R, and make the
definition

〈e
ip1q(t1)

r ...e
ipnq(tn)

r 〉0 := e−
~

2r2

∑
`,j p`pjG(t`−tj),

where
∑

j pj = 0. (Here subscript 0 stands for degree zero maps).
Assuming that 0 ≤ t1, ..., tn ≤ L, we find after a short calculation
using (7.5):

〈e
ip1q(t1)

r ...e
ipnq(tn)

r 〉0 = e
~

2r2
(
∑
`<j p`pj |t`−tj |+

(
∑
j pjtj)2

L
)

(the second summand disappears as L→∞, and we recover the answer
on the line).

It is, however, more natural (as we will see later) to integrate over
all maps q, not only degree zero. Namely, let N be an integer. Then
all maps of degree N have the form q(t) + 2πrNt

L
, where q is a map

of degree zero. Thus, if we want to integrate over maps of degree N ,
we should compute the same integral as in degree zero, but with shift
q 7→ q + 2πrNt

L
. But it is easy to see that this shift results simply in

rescaling of the integrand by the factor e
2πiN
L

∑
j pjtj−

2π2r2N2

~L . Thus, the
integral over all maps should be defined by the formula

〈e
ip1q(t1)

r ...e
ipnq(tn)

r 〉 =

(7.6) e
~

2r2
(
∑
l<j p`pj |t`−tj |+

(
∑
pjtj)2

L
)

∑
N∈Z e

2πiN
L

∑
j pjtj−

2π2r2N2

~L∑
N∈Z e

− 2π2r2N2

~L

.

Introduce the elliptic theta-function

θ(u, T ) :=
∑
N∈Z

e2πiuN−πTN2

.
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Then for L ≥ t1 ≥ ... ≥ tn ≥ 0 formula (7.6) can be rewritten in the
form
(7.7)

〈e
ip1q(t1)

r ...e
ipnq(tn)

r 〉 = e
~

2r2
(
∑
j(tj−tj+1)(p1+...+pj)

2+
(
∑
j pjtj)2

L
) θ(

∑
j pjtj

L
, 2πr2

~L )

θ(0, 2πr2

~L )
.

Exercise 7.27. Calculate the 1-particle irreducible 2-point function

for a quantum particle with potential U(q) := m2q2

2
− gq4

4!
modulo g3 in

momentum space, for ~ = 1. (We have done this modulo g2 in position
space).

Exercise 7.28. Let U(q) := m2q2

2
− gq3

3
.

(i) Calculate the leading term of the 1-point function G1(t) (with
respect to g).

(ii) Calculate the connected 2-point function modulo g3.

Exercise 7.29. Consider the potential U(x) := m2 sinh2(gx)
2g2 . Find a

formula for W0(J) (the tree part of log(Z(J)/Z(0))) as explicitly as
you can, when J(t) = aδ(t).
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