
10. Quantum mechanics for fermions

10.1. Feynman calculus in the supercase. Wick’s theorem allows
us to extend Feynman calculus to the supercase. Namely, let

V = V0 ⊕ V1

be a finite dimensional real superspace with a supervolume element
dv = dv0(dv1)−1, equipped with a symmetric non-degenerate form B =
B0 ⊕B1 (B0 > 0). Let

S(v) =
1

2
B(v, v)−

∑
r≥3

Br(v, v, ..., v)

r!

be an even function on V (the action). Note that Br, r ≥ 3 can contain
mixed terms involving both odd and even variables, e.g. xξ1ξ2 (the so
called “Yukawa term”). We will consider the integral

I(~) =

∫
V

`1(v0)...`n(v0)λ1(v1)...λp(v1)e−
S(v)
~ dv,

where v0, v1 are the even and odd components of v. Then this integral
has an expansion in ~ written in terms of Feynman diagrams. Since
v has both odd and even part, these diagrams will contain “odd” and
“even” edges (which are usually depicted by straight and wiggly lines,
respectively). More precisely, let us write

Br(v, v, ..., v) =
r∑
s=0

(
r
s

)
Bs,r−s(v1, ..., v1, v0, ..., v0),

where Bs,r−s has homogeneity degree s with respect to v1 and r − s
with respect to v0 (i.e. it will be nonzero only for even s). Then to
each term Bs,r−s we assign an (s, r− s)-valent flower, i.e. a flower with
s odd and r − s even outgoing edges, and for the set of odd outgoing
edges, specify which orderings are even. Then, given an arrangement
of flowers, for every matching σ of outgoing edges, we can define an
amplitude F(σ) by contracting the tensors Bs,r−s (and being careful
with the signs). It is easy to check that all matchings giving the same
graph will contribute to I(~) with the same sign, and thus we have
almost the same formula as in the bosonic case:

I(~) = (2π)
dimV0

2 ~
dimV0−dimV1

2
Pf(−B1)√

detB0

∑
Γ

~b(Γ)

|Aut(Γ)|
FΓ(`1, ..., `n, λ1, ..., λp),

where the summation is taken over graphs with n even and p odd
outgoing edges.
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Remark 10.1. More precisely, we can define the sign εσ of a matching
σ as follows: label outgoing edges by 1, 2, ..., starting from the fisrt
flower, then second, etc., so that the labeling is even on each flower.
Then write the labels in a sequence, enumerating (in any order) the
pairs defined by σ (the element with the smaller of the two labels
goes first). The sign εσ is by definition the sign of this ordering (as a
permutation of 1, 2, ...). Then FΓ is F(σ) for any matching σ yielding
Γ which is positive, i.e. such that εσ = 1. For a negative matching,
FΓ = −F(σ).

In most (but not all) situations considered in physics, the action is
quadratic in the fermionic variables, i.e.

S(v) = Sb(v0)− 1
2
Sf (v0)(v1, v1),

where Sf (v0) is a skew-symmetric bilinear form on ΠV1. In this case,
using fermionic Wick’s theorem, we can perform exact integration with
respect to v1, and reduce I(~) to a purely bosonic integral. For example,
if we have only `i and no λi, then

I(~) = ~−
dimV1

2

∫
V0

`1(v0)...`n(v0)e−
Sb(v0)

~ Pf(Sf (v0))dv0.

In this situation, all vertices which have odd outgoing edges, will have
only two of them, and therefore in any Feynman diagram with even
outgoing edges, odd lines form nonintersecting simple curves, called
fermionic loops (in fact, the last formula is nothing but the result of
regarding these loops as a new kind of vertices – convince yourself
of this!). In this case, there is the following simple way of assigning
signs to Feynman diagrams. For each vertex with two odd outgoing
edges, we orient the first edge inward and the second one outward. We
allow only connections (matchings) that preserve orientations (so the
fermionic loops become oriented). Then the sign is (−1)r, where r is
the number of fermionic loops (i.e. each fermionic loop contributes a
minus sign). This follows from the fact that an even cycle is an odd
permutation.

10.2. Fermionic quantum mechanics. Let us now pass from finite
dimensional fermionic integrals to quantum mechanics, i.e. integrals
over fermionic functions of one (even) real variable t.

Let us first discuss fermionic classical mechanics, in the Lagrangian
setting. Its difference with the bosonic case is that the “trajectory”
of the particle is described by an odd-valued function of one variable,
i.e. ψ : R → ΠV , where V is a vector space. Mathematically this
means that the space of fields (=trajectories) is an odd vector space
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ΠC∞(R, V ). A Lagrangian L(ψ) is a local expression in such a field

(i.e. a polynomial in ψ, ψ̇, ...), and an action is the integral S =
∫
R Ldt.

This means that the action is an element of the space Λ(C∞0 (R, V )∗).
Consider for example the theory of a single scalar-valued free fermion

ψ(t). By definition, the Lagrangian for such a theory is

L =
1

2
ψψ̇,

i.e. the action is

S =
1

2

∫
ψψ̇dt.

This Lagrangian is the odd analog of the Lagrangian of a free particle,
q̇2

2
.

Remark 10.2. Note that ψψ̇ 6= d
dt

(ψ
2

2
) = 0, since ψψ̇ = −ψ̇ψ, so this

Lagrangian is “reasonable”. On the other hand, the same Lagrangian
would be unreasonable in the bosonic case, as it would be a total de-
rivative, and hence the action would be zero. Finally, note that it
would be equally unreasonable to use in the fermionic case the usual
bosonic Lagrangian 1

2
(q̇2 −m2q2); it would identically vanish if q were

odd-valued.

The Lagrangian L is invariant under the group of reparametrizations
Diff+(R), and the Euler-Lagrange equation for this Lagrangian is

ψ̇ = 0

(i.e. no dynamics). Theories with such properties are called topological
quantum field theories.

Let us now turn to quantum theory in the Lagrangian setting, i.e. the

theory given by the Feynman integral
∫
ψ(t1)...ψ(tn)e

iS(ψ)
~ Dψ. In the

bosonic case, we “integrated” such expressions over the space C∞0 (R).
This integration did not make immediate sense because of difficulties
with measure theory in infinite dimensions. So we had to make sense
of this integration in terms of ~-expansion, using Wick’s formula and
Feynman diagrams. In the fermionic case, the situation is analogous.
Namely, now we must integrate functions over ΠC∞0 (R), which are
elements of ΛD(R), where D(R) is the space of distributions on R.
Although in the fermionic case we don’t need measure theory (as in-
tegration is completely algebraic), we still have trouble defining the
integral: recall that by definition the integral should be the top coeffi-
cient of the integrand as the element of ΛD(R), which makes no sense
since in the exterior algebra of an infinite dimensional space there is
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no top component. Thus we have to use the same strategy as in the
bosonic case, i.e. Feynman diagrams.

Let us, for instance, define the quantum theory for a free scalar val-
ued fermion, i.e one described by the Lagrangian L = 1

2
ψψ̇. According

to the yoga we used in the bosonic case, the two-point function of this
theory 〈ψ(t1)ψ(t2)〉 should be the function G(t1 − t2), where G is the
solution of the differential equation

dG

dt
= iδ(t).

(the factor i comes from the exponent in the Feynman integral; note
that in the fermionic case it does not go away under Wick rotation).

The general solution of this equation has the form

G(t) =
i

2
sign(t) + C.

Because of the fermionic nature of the field ψ(t), it is natural to impose
the requirement that G(−t) = −G(t), i.e. that the correlation func-
tions are antisymmetric; this singles out the solution G(t) = i

2
sign(t)

(we also see from this condition that we should set G(0) = 0). As
usual, the 2n-point correlation functions are defined by the Wick for-
mula. That is, for distinct tj,

〈ψ(t1)...ψ(t2n)〉 = (−1)σ(2n− 1)!!( i
2
)n,

where σ is the permutation that orders tj in the decreasing order. If
at least two points coincide, the correlation function is zero.

Thus we see that the correlation functions are invariant under Diff+(R).
In other words, using physical terminology, we have a topological quan-
tum field theory.

Note that the correlation functions in the Euclidian setting for this
model are the same as in the Minkowski setting, since they are (piece-
wise) constant in tj. In particular, they don’t decay at infinity, and
hence our theory does not have the clustering property.

We have considered the theory of a massless fermionic field. Consider
now the massive case. This means, we want to add to the Lagrangian a
quadratic term in ψ which does not contain derivatives. If we have only
one field ψ, the only choice for such term is ψ2, which is zero. So in the
massive case we must have at least two fields. Let us therefore consider
the theory of two fermionic fields ψ1, ψ2 with (Euclidean) Lagrangian

L =
1

2
(ψ1ψ̇1 + ψ2ψ̇2 −mψ1ψ2),
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where m > 0 is a mass parameter. The Green’s function for this model
satisfies the differential equation

dG

dt
−MG = iδ(t),

where M =

(
0 m
−m 0

)
and G is a 2 by 2 matrix-valued function. The

general solution of this equation is

G(t) =

{
eMtQ−, t < 0

eMtQ+, t > 0

where Q+ −Q− = i. Now, we want the Wick rotated Green’s function
G(−it) to have the clustering property. Thus we want

lim
t→+∞

e−iMtQ+ = 0, lim
t→−∞

e−iMtQ− = 0.

This implies that Q+ = iP+, Q− = −iP−, where P± are the orthogonal
projectors to the eigenspaces of iM with eigenvalues ±m (and G(0) =
0).

Remark 10.3. It is easy to generalize this analysis to the situation
when ψ takes values in a positive definite inner product space V , and
M : V → V is a skewsymmetric operator, since such a situation is a
direct sum of the situations considered above.

In the case when M is non-degenerate, one can define the correspond-
ing theory with interactions, i.e. with higher than quadratic terms in
ψ. Namely, one defines the correlators as sums of amplitudes of appro-
priate Feynman diagrams. We leave it to the reader to work out this
definition, by analogy with the finite dimensional case which we have
discussed above.

10.3. Super Hilbert spaces. The space of states of a quantum sys-
tem is a Hilbert space. As we plan to do Hamiltonian quantum me-
chanics for fermions, we must define a superanalog of this notion.

Suppose H = H0 ⊕H1 is a Z/2-graded complex vector space.

Definition 10.4. (i) A Hermitian form on H is an even sesquilinear

form 〈 , 〉, such that 〈x, y 〉 = 〈 y, x 〉 for even x, y, and 〈x, y 〉 = −〈 y, x 〉
for odd x, y.

(ii) A Hermitian form is positive definite if 〈x, x 〉 > 0 for even x 6= 0,
and −i〈x, x 〉 > 0 for odd x 6= 0. A super Hilbert space is a superspace
with a positive definite Hermitian form 〈 , 〉, which is complete in the
corresponding norm.
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(iii) Let H be a super Hilbert space, and T : H0⊕ΠH1 → H0⊕ΠH1

be a homogeneous linear operator between the underlying purely even
spaces. The Hermitian adjoint operator T † is defined by the equation
〈x, T †y 〉 = (−1)p(x)p(T )〈Tx, y 〉, where p denotes the parity.

10.4. The Hamiltonian setting for fermionic quantum mechan-
ics. Let us now discuss what should be the Hamiltonian picture for the
theory of a free fermion. More precisely, let V be a positive definite fi-
nite dimensional real inner product space, and consider the Lagrangian

L =
1

2
((ψ, ψ̇)− (ψ,Mψ)),

where ψ : R→ ΠV , and M : V → V is a skew-symmetric operator.
To understand what the Hamiltonian picture should be, let us com-

pare with the bosonic case. Namely, consider the Lagrangian

Lb =
1

2
(q̇2 −m2q2),

where q : R→ V . In this case, the classical space of states is

Y := T ∗V = V ⊕ V ∗.
The equations of motion are Newton’s equations

q̈ = −m2q,

which can be reduced to Hamilton’s equations

q̇ = p, ṗ = −m2q.

The algebra of classical observables is C∞(Y ), with Poisson bracket
defined by {a, b} = (a, b), a, b ∈ Y ∗, where (, ) is the form on Y ∗ inverse
to the natural symplectic form on Y . The hamiltonian H is determined
(up to adding a constant) by the condition that the equations of motion

are ḟ = {f,H}; in this case it is H = 1
2
(p2 +m2q2).

The situation in the fermionic case is analogous, with some important
differences which we will explain below. Namely, it is easy to compute
that the equation of motion (i.e. the Euler-Lagrange equation) is

ψ̇ = Mψ.

The main difference with the bosonic case is that this equation is of first
and not of second order, so the space of classical states is just ΠV (no
momentum or velocity variables are introduced). Hence the algebra of
classical observables is C∞(ΠV ) = ΛV ∗. To define a Poisson bracket
on this algebra, recall that ΠV has a natural “symplectic structure”,
defined by the symmetric form (, ) on V . Thus we can define a Poisson
bracket on ΛV ∗ by the same formula as above: {a, b} = (a, b) when
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a, b ∈ V ∗. More precisely, {, } is a unique skew symmetric (in the
supersense) bilinear operation on ΛV ∗ which restricts to (a, b) for a, b ∈
V ∗, and is a derivation with respect to each variable:

{a, bc} = {a, b}c+ (−1)p(a)p(b)b{a, c},
where p(a) denotes the parity of a.

Now it is easy to see what should play the role of the Hamiltonian.
More precisely, the definition with Legendre transform is not valid in
our situation, since the Legendre transform was done with respect to
the velocity variables, which we don’t have in the fermionic case. On
the other hand, as we discussed in Section 8, in the bosonic case the
equation of motion

ḟ = {f,H}
determines H uniquely, up to a constant. The situation is the same
in the fermionic case. Namely, by looking at the equation of motion
ψ̇ = Mψ, it is easy to see that the Hamiltonian equals

H =
1

2
(ψ,Mψ).

In particular, if M = 0 (massless case), the Hamiltonian is zero (a
characteristic property of topological field theories).

Now let us turn to quantum theory. In the bosonic case the algebra of
quantum observables is a noncommutative deformation of the algebra
C∞(Y ) in which the relation {a, b} = (a, b) is replaced with its quantum
analog

ab− ba = i(a, b)

(up to the Planck constant factor which here we will set to 1). In
particular, the subalgebra of polynomial observables is the Weyl alge-
bra W (Y ), generated by Y ∗ with this defining relation. By analogy
with this, we should define the algebra of quantum observables in the
fermionic case to be generated by V ∗ with the relation

ab+ ba = i(a, b)

(it deforms the relation ab + ba = 0 which defines ΛV ∗). So we recall
the following definition.

Definition 10.5. Let V be a vector space over a field k with a sym-
metric bilinear form Q. The Clifford algebra Cl(V,Q) is generated by
V with defining relations ab+ ba = Q(a, b), a, b ∈ V .

We see that the algebra of quantum observables should be Cl(V ∗C , i(, )).
Note that like in the classical case, this algebra is naturally Z/2 graded,
so that we have even and odd quantum observables.
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Now let us see what should be the Hilbert space of quantum states.
In the bosonic case it was L2(V ), which is, by the well known Stone-
von Neumann theorem, the unique irreducible unitary representation
of W (Y ). By analogy with this, in the fermionic case the Hilbert space
of states should be an irreducible unitary representation of Cl(V ∗C ) on
a supervector space H.

The structure of the Clifford algebra Cl(V ∗C ) is well known. Namely,
consider separately the cases when dimV is odd and even.

In the even case, dimV = 2d, Cl(V ∗C ) is simple (i.e., isomorphic to
a matrix algebra), and has a unique irreducible representation H, of
dimension 2d. This representation is constructed as follows: choose a
decomposition VC = L ⊕ L∗, where L,L∗ are Lagrangian subspaces;
then H = ΛL, where L ⊂ V ∗C acts by multiplication and L∗ by differ-
entiation (multiplied by −i). The structure of the superspace on H is
the standard one on the exterior algebra.

In the odd case, dimV = 2d+ 1, choose a decomposition

VC = L⊕ L∗ ⊕K,
where L,L∗ are maximal isotropic, andK is a non-degenerate 1-dimensional
subspace orthogonal to L and L∗. Let H = Λ(L⊕K), where L,K act
by multiplication and L∗ by (−i times) differentiation. This is a rep-
resentation of Cl(V ∗C ) with a Z/2 grading. This representation is not
irreducible, and decomposes in a direct sum of two non-isomorphic ir-
reducible representations H+⊕H− (this is related to the fact that the
Clifford algebra for odd dimV is not simple but is a direct product of
two simple, i.e. matrix, algebras). However, this decomposition is not
consistent with the Z/2-grading, and therefore as superrepresentation,
H is irreducible.

Now, it is easy to show that both in the odd and in the even case
the space H carries a unique up to scaling Hermitian form, such that
V ∗ ⊂ V ∗C acts by self-adjoint operators. This form is positive definite.
So the situation is similar to the bosonic case for any dimV .

Let us now see which operator on H should play the role of the
Hamiltonian of the system. The most natural choice is to define the
quantum Hamiltonian to be the obvious quantization of the classical
Hamiltonian H = 1

2
(ψ,Mψ). Namely, if εi is an orthonormal basis of

V ∗ and aij is the matrix of M in this basis, then one sets

Ĥ =
1

2

∑
i,j

aijεiεj.

To compute this operator more explicitly, we will assume (without
loss of generality) that the decomposition of VC that we chose is stable
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under M . Let ξj be an eigenbasis of M in L with eigenvalues imj where
mj ≥ 0, and ∂j be differentiations along the vectors of this basis. Then

Ĥ =
∑
j

mj(ξj∂j − ∂jξj) =
∑
j

mj(2ξj∂j − 1).

This shows that if dimV is even then the partition function on the
circle of length L for our theory is

Z = sTr(e−LĤ) =
∏
j

(emjL − e−mjL).

If the dimension of V is odd then the partition function is zero.
Now we would like to consider the fermionic analog of the Feynman-

Kac formula. For simplicity consider the fully massive case, when
dimV is even and mj 6= 0 (i.e. M is non-degenerate). In this case, we

have a unique up to scaling lowest eigenvector of Ĥ, namely Ω = 1.
Let ψ(0) ∈ V ⊗ End(H) be the element corresponding to the ac-

tion map V ∗ → End(H) (the Clifford multiplication), and ψ(t) =

eitĤψ(0)e−itĤ . Also, denote by 〈ψ(t1)...ψ(tn)〉, t1 ≥ ... ≥ tn, the cor-
relation function for the free theory in the Lagrangian setting, taking
values in V ⊗n (so in this expression ψ(tj) is a formal symbol and not
an operator).

Theorem 10.6. (Feynman-Kac formula) (i) For the free theory on the
line we have

〈ψ(t1)...ψ(tn)〉 = 〈Ω, ψ(t1)...ψ(tn)Ω 〉.
(ii) For the free theory on the circle of length L we have

〈ψ(t1)...ψ(tn)〉 =
sTr(ψ(t1)...ψ(tn)e−LĤ)

sTr(e−LĤ)
.

Exercise 10.7. Prove this theorem. (The proof is analogous to Theo-
rem 8.22 in the free case).

It should now be straightforward for the reader to formulate and
prove the Feynman-Kac formula for an interacting (i.e., not necessar-
ily free) quantum-mechanical model which includes both bosonic and
fermionic massive fields. We leave this as an instructive exercise.

Exercise 10.8. (i) Consider quantum mechanics with Yukawa cou-
pling. That is, we have a scalar boson φ(t) and two fermions ψ1(t), ψ2(t),
and the Euclidean Lagragian is

L =
1

2
(φ̇2 +m2φ2 + ψ1ψ̇1 + ψ2ψ̇2 − µψ1ψ2) + gφψ1ψ2.
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Compute the 2-point function 〈φ(t)φ(0)〉 modulo g3 (in the Euclidean
setting).

Hint. The correction to the free theory answer is given by one Feyn-
man diagram. Remember about automorphism groups and the minus
sign corresponding to fermionic loops.

(ii) In the same theory, compute the two-point function 〈ψ1(t)ψ1(0)〉
modulo g3 (in the Euclidean setting). Does the corresponding diagram
have non-trivial automorphisms?
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