A few important PDEs

+ many, many others...

Maxwell (electromagnetism)
Schrödinger (quantum mechanics)
Navier-Stokes / Stokes / Euler (fluids)

> Black-Scholes (options pricing)

Lamé-Navier (linear elastic solids)
beam equation (bending thin solid strips)
advection-diffusion (diffusion in flows)
reaction-diffusion (diffusion+chemistry)
minimal-surface equation (soap films)
nonlinear wave equation (e.g. solitary ocean waves)
vector space of column vectors \mathbf{x} (or $\vec{\chi})$ in $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$, or possibly $\mathbf{x}(\mathrm{t})$ [time-dependent]
vector space:
we can add, subtract, \& multiply by constants without leaving the space
vector space of real-valued (or complex) functions $u(\mathbf{x})$ [for \mathbf{x} in some domain Ω],

possibly restricted by some boundary conditions at the boundary $\partial \Omega$ [e.g. $u(\mathbf{x})=0$ on $\partial \Omega$]
possibly with vector-valued $\mathbf{u}(\mathbf{x})$ [vector fields]
linear operators: matrices A
linear operators on functions \hat{A}, [Âu = function $]$
using partial derivatives. examples:
$\hat{A}_{1} u=\nabla^{2} u \quad$ [Laplacian operator]
$\hat{A}_{2} u=3 u \quad$ [mult. by constant]
$\left.\hat{A}_{3} u\right|_{\mathbf{x}}=a(\mathbf{x}) u(\mathbf{x}) \quad$ [mult. by function] $\hat{A}=4 \hat{A}_{1}+\hat{A}_{2}+7 \hat{A}_{3} \quad$ [linear comb. of ops.]

dot product and transpose:	$\begin{array}{ll} \mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{*} \mathbf{y}=\Sigma_{i} x_{i} y_{i} & \text { complex } \mathbf{x}: \\ \mathbf{x} \cdot A \mathbf{y}=\mathbf{x}^{*} A \mathbf{y}=(A \mathbf{x})^{*} \mathbf{y} & \mathbf{x}^{\mathrm{T}} \rightarrow \mathbf{x}^{\mathrm{T}}=\mathbf{x}^{*} \\ \Leftrightarrow(A)^{*}{ }_{i j}=A_{j i} & \text { [conjugate \& swap rows/cols] } \end{array}$	$\left(\frac{\partial}{\partial x}\right)^{*}=? ? ?$	$\begin{aligned} & u(\mathbf{x}) \cdot v(\mathbf{x})=\langle u, v\rangle=? ? ? ? ? ? ? ? \quad \begin{array}{c} {[\text { inner product }]} \\ \langle u, \hat{A} v\rangle=\left\langle\hat{A}^{*} u, v\right\rangle \\ \Rightarrow \hat{A}^{*}=? ? ? ? ? ? ? ?\left(=\hat{A}^{\dagger} \text { in physics }\right] \end{array} \quad[\text { adjoint }] \end{aligned}$
basis:	set of vectors \mathbf{b}_{i} with span $=$ whole space \Leftrightarrow any $\mathbf{x}=\Sigma_{i} c_{i} \mathbf{b}_{i}$ for some coefficients c_{i} \ldots if orthonormal basis, then $c_{i}=\mathbf{b}_{i}{ }^{*} \mathbf{x}$	$\begin{aligned} & \text { [e.g. } \\ & \text { Fourier series!] } \end{aligned}$	∞ set of functions $b_{i}(\mathbf{x})$ with span $=$ whole space \Leftrightarrow any $u(\mathbf{x})=\Sigma_{i} c_{i} b_{i}(\mathbf{x})$ for some coefficients c_{i} \ldots if orthonormal basis, then $c_{i}=\left\langle b_{i}, u\right\rangle$

linear equations:	solve $A \mathbf{x}=\mathbf{b}$ for \mathbf{x}	solve $\hat{A} u=f$ for $u(\mathbf{x})$
existence	$A \mathbf{x}=\mathbf{b}$ solvable if \mathbf{b} in column space of A.	$\hat{A} u=f$ solvable if $f(\mathbf{x})$ in col. space $($ image $)$ of \hat{A}.
$\boldsymbol{\&}$ uniqueness:	Solution unique if null space of $A=\{\mathbf{0}\}$, or equivalently if eigenvalues of A are $\neq 0$.	Solution unique if null space $($ kernel $)$ of $\hat{A}=\{0\}$ or equivalently if eigenvalues of \hat{A} are $\neq 0$.

eigenvalues/vectors: solve $A \mathbf{x}=\lambda \mathbf{x}$ for \mathbf{x} and λ.
For this \mathbf{x}, A acts just like a number (λ).
solve $\hat{A} u=\lambda u$ for $u(\mathbf{x})$ [eigenfunction] and λ.
For this u, \hat{A} acts just
[e.g. $A^{n} \mathbf{X}=\lambda^{n} \mathbf{x}, e^{A} \mathbf{x}=e^{\lambda} \mathbf{x}$.]
[e.g. $\hat{A}^{n} u=\lambda^{n} u, e^{\hat{A}} u=e^{\lambda} u$.] $\quad \begin{aligned} & \frac{\partial^{2}}{} \text { example: } \\ & \partial x^{2} \\ & \sin (k x)=\left(-k^{2}\right) \sin (k x)\end{aligned}$

time-evolution	solve $\mathrm{d} \mathbf{x} / \mathrm{d} t=A \mathbf{x}$ for $\mathbf{x}(0)=\mathbf{b} \quad$ [system of $O D E s]$	solve $\partial u / \partial t=\hat{A} u$ for $u(\mathbf{x}, 0)=f(\mathbf{x})$
initial-value	$\Rightarrow \mathbf{x}=e^{A t} \mathbf{b} \quad[$ if A constant $]$	$\Rightarrow u(\mathbf{x}, t)=e^{\hat{A} t} f(\mathbf{x}) \quad[$ if \hat{A} constant]
problem:	\ldots expand \mathbf{b} in eigenvectors, mult. each by $e^{\lambda t}$	\ldots expand f in eigenfunctions, mult. each by $e^{\lambda t}$

real-symmetric	$A=A^{*}$	$\hat{A}=\hat{A}^{*} \quad[? ? ? ? ? ?]$
or Hermitian:	\Rightarrow real λ, orthogonal eigenvectors, diagonalizable	\Rightarrow real λ, orthogonal eigenvectors (???)
		diagonalizable (???)

positive definite
/ semi-definite:
$A=A^{*}, \mathbf{x}^{*} A \mathbf{x}>0$ for any $\mathbf{x} \neq \mathbf{0} / \mathbf{x}^{*} A \mathbf{x} \geq 0$
\Leftrightarrow real $\lambda>0 / \geq 0, A=B^{*} B$ for some B
$\hat{A}=\hat{A}^{*},\langle u, \hat{A} u\rangle>0 / \geq 0$ for $u \neq 0 \quad$????)
\Leftrightarrow real $\lambda>0 / \geq 0, \hat{A}=\hat{B}^{*} \hat{B}$ for some \hat{B} (???)
important fact: $-\nabla^{2}$ is symmetric positive definite or semi-definite

inverses:	$A^{-1} A=A A^{-1}=1 \quad[$ if it exists $]$	$\left(\frac{\partial}{\partial x}\right)^{-1}=? ? ?$	$\hat{A}^{-1}=? ? ? ? ? ?$
	$\Rightarrow A \mathbf{x}=\mathbf{b}$ solved by $\mathbf{x}=A^{-1} \mathbf{b}$	\ldots some kind of integral?	$\Rightarrow \hat{A} u=f$ solved by $f=\hat{A}^{-1} u ? ? ?$

(real) orthogonal or unitary:
$A^{-1}=A^{*} \Leftrightarrow(A \mathbf{x}) \cdot(A \mathbf{x})=\mathbf{x} \cdot \mathbf{x}$ for any \mathbf{x}
$\Rightarrow|\lambda|=1$, orthogonal eigenvectors, diagonalizable
$\hat{A}^{-1}=\hat{A}^{*} \Leftrightarrow\langle\hat{A} u, \hat{A} u\rangle=\langle u, u\rangle$ for any u
$\Rightarrow|\lambda|=1$, orthogonal eigenvectors (???) diagonalizable (???)

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

