18.303 Problem Set 1

Due Friday, 12 September 2014.
Note: For computational (Julia-based) homework problems in 18.303 , turn in with your solutions a printout of any commands used and their results (please edit out extraneous/irrelevant stuff), and a printout of any graphs requested; alternatively, you can email your notebook (.ipynb) file to the grader. Always label the axes of your graphs (with the xlabel and ylabel commands), add a title with the title command, and add a legend (if there are multiple curves) with the legend command. (Labelling graphs is a good habit to acquire.) Because IJulia notebooks let you combine code, plots, headings, and formatted text, it should be straighforward to turn in well-documented solutions.

Problem 1: 18.06 warmup

Here are a few questions that you should be able to answer based only on 18.06:
(a) Suppose that B is a Hermitian positive-definite matrix. Show that there is a unique matrix \sqrt{B} which is Hermitian positive-definite and has the property $(\sqrt{B})^{2}=B$. (Hint: use the diagonalization of B.)
(b) Suppose that A and B are Hermitian matrices and that B is positive-definite.
(i) Show that $B^{-1} A$ is similar (in the 18.06 sense) to a Hermitian matrix. (Hint: use your answer from above.)
(ii) What does this tell you about the eigenvalues λ of $B^{-1} A$, i.e. the solutions of $B^{-1} A \mathbf{x}=$ $\lambda \mathbf{x}$?
(iii) Are the eigenvectors \mathbf{x} orthogonal?
(iv) In Julia, make a random 5×5 real-symmetric matrix via $A=r a n d(5,5) ; A=A+A$, and a random 5×5 positive-definite matrix via $B=\operatorname{rand}(5,5) ; B=B \prime * B \ldots$ then check that the eigenvalues of $B^{-1} A$ match your expectations from above via lambda, X $=$ eigvals $(B \backslash A)$ (this will give an array lambda of the eigenvalues and a matrix X whose columns are the eigenvectors).
(v) Using your Julia result, what happens if you compute $C=X^{T} B X$ via $\mathrm{C}=\mathrm{X}{ }^{\prime} * \mathrm{~B} * \mathrm{X}$? You should notice that the matrix C is very special in some way. Show that the elements $C_{i j}$ of C are a kind of "dot product" of the eigenvectors i and j, but with a factor of B in the middle of the dot product.
(c) The solutions $y(t)$ of the ODE $y^{\prime \prime}-2 y^{\prime}-c y=0$ are of the form $y(t)=C_{1} e^{(1+\sqrt{1+c}) t}+$ $C_{2} e^{(1-\sqrt{1+c}) t}$ for some constants C_{1} and C_{2} determined by the initial conditions. Suppose that A is a real-symmetric 4×4 matrix with eigenvalues $3,8,15,24$ and corresponding eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{4}$, respectively.
(i) If $\mathbf{x}(t)$ solves the system of ODEs $\frac{d^{2}}{d t^{2}} \mathbf{x}-2 \frac{d}{d t} \mathbf{x}=A \mathbf{x}$ with initial conditions $\mathbf{x}(0)=\mathbf{a}_{0}$ and $\mathbf{x}^{\prime}(0)=\mathbf{b}_{0}$, write down the solution $\mathbf{x}(t)$ as a closed-form expression (no matrix inverses or exponentials) in terms of the eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{4}$ and \mathbf{a}_{0} and \mathbf{b}_{0}. [Hint: expand $\mathbf{x}(t)$ in the basis of the eigenvectors with unknown coefficients $c_{1}(t), \ldots, c_{4}(t)$, then plug into the ODE and solve for each coefficient using the fact that the eigenvectors are --------- .]
(ii) After a long time $t \gg 0$, what do you expect the approximate form of the solution to be?

Problem 2: Les Poisson, les Poisson

In class, we considered the 1d Poisson equation $\frac{d^{2}}{d x^{2}} u(x)=f(x)$ for the vector space of functions $u(x)$ on $x \in[0, L]$ with the "Dirichlet" boundary conditions $u(0)=u(L)=0$, and solved it in terms of the eigenfunctions of $\frac{d^{2}}{d x^{2}}$ (giving a Fourier sine series). Here, we will consider a couple of small variations on this:
(a) Suppose that we we change the boundary conditions to the periodic boundary condition $u(0)=u(L)$.
(i) What are the eigenfunctions of $\frac{d^{2}}{d x^{2}}$ now?
(ii) Will Poisson's equation have unique solutions? Why or why not?
(iii) Under what conditions (if any) on $f(x)$ would a solution exist? (You can restrict yourself to f with a convergent Fourier series.)
(b) If we instead consider $\frac{d^{2}}{d x^{2}} v(x)=g(x)$ for functions $v(x)$ with the boundary conditions $v(0)=$ $v(L)+1$, do these functions form a vector space? Why or why not?
(c) Explain how we can transform the $v(x)$ problem of the previous part back into the original $\frac{d^{2}}{d x^{2}} u(x)=f(x)$ problem with $u(0)=u(L)$, by writing $u(x)=v(x)+q(x)$ and $f(x)=$ $g(x)+r(x)$ for some functions q and r. (Transforming a new problem into an old, solved one is always a useful thing to do!)

Problem 3: Finite-difference approximations

For this question, you may find it helpful to refer to the notes and reading from lecture 3. Consider a finite-difference approximation of the form:

$$
u^{\prime}(x) \approx \frac{-u(x+2 \Delta x)+c \cdot u(x+\Delta x)-c \cdot u(x-\Delta x)+u(x-2 \Delta x)}{d \cdot \Delta x} .
$$

(a) Substituting the Taylor series for $u(x+\Delta x)$ etcetera (assuming u is a smooth function with a convergent Taylor series, blah blah), show that by an appropriate choice of the constants c and d you can make this approximation fourth-order accurate: that is, the errors are proportional to $(\Delta x)^{4}$ for small Δx.
(b) Check your answer to the previous part by numerically computing $u^{\prime}(1)$ for $u(x)=\sin (x)$, as a function of Δx, exactly as in the handout from class (refer to the notebook posted in lecture 3 for the relevant Julia commands, and adapt them as needed). Verify from your log-log plot of the |errors| versus Δx that you obtained the expected fourth-order accuracy.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

