18.303 Midterm Solutions, Fall 2014

Problem 1:

Define the inner product $\langle u, v\rangle_{c}=\int_{\Omega} c \bar{u} v=\int_{\Omega} \overline{c u} v=\langle c u, v\rangle$ where $\langle u, v\rangle=\int_{\Omega} \bar{u} v$. Then $\langle u, \hat{A} v\rangle_{c}=\left\langle c u,(c v)^{\prime \prime}\right\rangle=$ $\left\langle(c u)^{\prime \prime}, c v\right\rangle=\langle c \hat{A} u, v\rangle=\langle\hat{A} u, v\rangle_{c}$, where we have used the self-adjointness of $d^{2} / d x^{2}$ under $\langle\cdot, \cdot\rangle$ from class. Therefore, $\hat{A}=\hat{A}^{*}$ under the $\langle u, v\rangle_{c}$ inner product (which is a proper inner product for real $c>0$).

Problem 2:

We need $-\nabla^{2} g=\delta(\mathbf{x})$, and we determine this by evaluating both sides with an arbitrary test function ψ, using the distributional derivative $\left(-\nabla^{2} g\right)\{\psi\}=g\left\{-\nabla^{2} \psi\right\}$ as in class. In cylindrical coordinates:

$$
\begin{aligned}
g\left\{-\nabla^{2} \psi\right\} & =-\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{\infty} r d r \int_{0}^{2 \pi} d \phi c \ln r\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right] \\
& =-c \int_{0}^{2 \pi} d \phi \lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{\infty} d r \ln r \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)-\left.\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{\infty} \frac{c \ln r}{r} d r \frac{\left.\partial \psi\right|^{24}}{\partial \phi}\right|_{0} ^{2 \pi} \\
& =-c \int_{0}^{2 \pi} d \phi \lim _{\epsilon \rightarrow 0^{+}}\left[\left.r \ln r \frac{\partial \psi}{\partial r}\right|_{\epsilon} ^{\infty}-\int_{\epsilon}^{\infty} d r \frac{\partial(\ln \gamma r)}{\partial r}\left(\nvdash \frac{\partial \psi}{\partial r}\right)\right] \\
& =\left.c \int_{0}^{2 \pi} d \phi \lim _{\epsilon \rightarrow 0^{+}} \psi\right|_{r=\epsilon} ^{r=\infty}=-2 \pi c \psi(\mathbf{0}) .
\end{aligned}
$$

To get $\delta \psi=\psi(\mathbf{0})$, therefore, we need $c=-1 / 2 \pi$.

Problem 3:

It is convenient to write $\hat{D}_{\sigma}=\hat{D}-\sigma I$, where I is the 2×2 identity matrix. Then it follows from $\hat{D}^{*}=-\hat{D}$ and $(\sigma I)^{*}=\sigma I$ (since σ is a real scalar and I is obviously self-adjoint) under the usual inner product $\left\langle\mathbf{w}, \mathbf{w}^{\prime}\right\rangle=\int_{\Omega} \mathbf{w}^{*} \mathbf{w}^{\prime}$ that we have $\hat{D}_{\sigma}^{*}=-\hat{D}-\sigma I$ and $\hat{D}_{\sigma}+\hat{D}_{\sigma}^{*}=-2 \sigma I$.
(a) For a solution \mathbf{w} of $\hat{D}_{\sigma} \mathbf{w}=\partial \mathbf{w} / \partial t$, we have

$$
\begin{aligned}
\partial\langle\mathbf{w}, \mathbf{w}\rangle / \partial t & =\langle\partial \mathbf{w} / \partial t, \mathbf{w}\rangle+\langle\mathbf{w}, \partial \mathbf{w} / \partial t\rangle \\
& =\left\langle\hat{D}_{\sigma} \mathbf{w}, \mathbf{w}\right\rangle+\left\langle\mathbf{w}, \hat{D}_{\sigma} \mathbf{w}\right\rangle \\
& =\left\langle\mathbf{w}, \hat{D}_{\sigma}^{*} \mathbf{w}\right\rangle+\left\langle\mathbf{w}, \hat{D}_{\sigma} \mathbf{w}\right\rangle=\left\langle\mathbf{w},\left(\hat{D}_{\sigma}^{*}+\hat{D}_{\sigma}\right) \mathbf{w}\right\rangle \\
& =-2\langle\mathbf{w}, \sigma \mathbf{w}\rangle=-2 \int \sigma(x)\|\mathbf{w}(x)\|^{2}<0
\end{aligned}
$$

and hence $\|\mathbf{w}\|^{2}=\langle\mathbf{w}, \mathbf{w}\rangle$ is decreasing in time.
If $\sigma(x) \geq \sigma_{0}>0$ for some σ_{0}, then we can go further and say that $E(t)=\|\mathbf{w}\|^{2}$ is decaying at least exponentially fast in time, since in that case $d E / d t \leq-2 \sigma_{0} E$ and from this one can show that $E(t) \leq E(0) e^{-2 \sigma_{0} t}$.
(i) Given an eigensolution $\hat{D}_{\sigma} \mathbf{w}_{n}=\lambda_{n} \mathbf{w}_{n}$, we can consider

$$
\begin{aligned}
\left\langle\mathbf{w}_{n},\left(\hat{D}_{\sigma}+\hat{D}_{\sigma}^{*}\right) \mathbf{w}_{n}\right\rangle & =-2\left\langle\mathbf{w}_{n}, \sigma \mathbf{w}_{n}\right\rangle \\
& =\left\langle\mathbf{w}_{n}, \hat{D}_{\sigma} \mathbf{w}_{n}\right\rangle+\left\langle\hat{D}_{\sigma} \mathbf{w}_{n}, \mathbf{w}_{n}\right\rangle \\
& =\left\langle\mathbf{w}_{n}, \lambda_{n} \mathbf{w}_{n}\right\rangle+\left\langle\lambda_{n} \mathbf{w}_{n}, \mathbf{w}_{n}\right\rangle \\
& =\left(\lambda_{n}+\overline{\lambda_{n}}\right)\left\langle\mathbf{w}_{n}, \mathbf{w}_{n}\right\rangle=\left\langle\mathbf{w}_{n}, \mathbf{w}_{n}\right\rangle 2 \operatorname{Re} \lambda_{n}
\end{aligned}
$$

Note that we moved \hat{D}_{σ}^{*} to act on the left via its adjoint. It is not in general true that $\hat{D}_{\sigma}^{*} \mathbf{w}_{n}=\overline{\lambda_{n}} \mathbf{w}_{n}$. Then we have:

$$
\operatorname{Re} \lambda_{n}=-\frac{\left\langle\mathbf{w}_{n}, \sigma \mathbf{w}_{n}\right\rangle}{\left\langle\mathbf{w}_{n}, \mathbf{w}_{n}\right\rangle}<0
$$

since $\sigma>0$. Hence the eigensolutions are decaying exponentially in time (while they oscillate via the imaginary part of λ_{n}), from their time dependence $e^{\lambda_{n} t}$.

Problem 4:

We will have $\partial u / \partial t=\partial v / \partial x-\sigma u$ and $\partial v / \partial t=\partial u / \partial x-\sigma v$, so the only new terms are the σ terms. In the discretized $\partial u / \partial t$ equation, the left-hand side is evaluated at point m and time $n+0.5$, so we have to get $u_{m}^{n+0.5}=\frac{u_{m}^{n}+u_{m}^{n+1}}{2}+O\left(\Delta t^{2}\right)$ by averaging (similarly to how we handled the Crank-Nicolson discretization in class). Similarly for the $\partial v / \partial t$ equation. Hence, we obtain:

$$
\begin{gathered}
\frac{u_{m}^{n+1}-u_{m}^{n}}{\Delta t}=\frac{v_{m+0.5}^{n+0.5}-v_{m-0.5}^{n+0.5}}{\Delta x}-\sigma \frac{u_{m}^{n+1}+u_{m}^{n}}{2} \\
\frac{v_{m+0.5}^{n+0.5}-v_{m+0.5}^{n-0.5}}{\Delta t}=\frac{u_{m+1}^{n}-u_{m}^{n}}{\Delta x}-\sigma \frac{v_{m+0.5}^{n+0.5}+v_{m+0.5}^{n-0.5}}{2}
\end{gathered}
$$

Solving for u_{m}^{n+1} and $v_{m+0.5}^{n+0.5}$, we obtain the "leap-frog" equations:

$$
\begin{aligned}
& u_{m}^{n+1}=\left(1+\frac{\sigma \Delta t}{2}\right)^{-1}\left[\left(1-\frac{\sigma \Delta t}{2}\right) u_{m}^{n}+\frac{\Delta t}{\Delta x}\left(v_{m+0.5}^{n+0.5}-v_{m-0.5}^{n+0.5}\right)\right] \\
& v_{m+0.5}^{n+0.5}=\left(1+\frac{\sigma \Delta t}{2}\right)^{-1}\left[\left(1-\frac{\sigma \Delta t}{2}\right) v_{m+0.5}^{n-0.5}+\frac{\Delta t}{\Delta x}\left(u_{m+1}^{n}-u_{m}^{n}\right)\right]
\end{aligned}
$$

Note that $\sigma>0$, so we are never dividing by zero in $1+\sigma \Delta t / 2$, regardless of Δt, which is comforting.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

