Julia \& IJulia Cheat-sheet (for 18.xxx at MIT)

Basics:

julialang.org documentation
github.com/stevengj/julia-mit installation \& tutorial
ipython notebook --profile-julia start IJulia browser
shift-return execute input cell in IJulia
Defining/changing variables:
$\mathrm{x}=3$ define variable x to be 3
$\mathrm{x}=[1,2,3] \quad$ array/"column"-vector $(1,2,3)$
$y=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad 1 \times 3$ row-vector $(1,2,3)$
$\mathrm{A}=\left[\begin{array}{lllllllllll}1 & 2 & 3 & 4 ; & 6 & 7 & 8 & 10 & 12\end{array}\right]$
$-\operatorname{set} A$ to 3×4 matrix with rows $1,2,3,4$ etc.
$\mathrm{x}[2]=7 \quad$ change x from $(1,2,3)$ to $(1,7,3)$
$\mathrm{A}[2,1]=0 \quad$ change $A_{2,1}$ from 5 to 0
$\mathrm{u}, \mathrm{v}=(15.03,1.2 \mathrm{e}-27) \quad$ set $u=15.03, v=1.2 \times 10^{-27}$
$f(x)=3 x \quad$ define a function $f(x)$
x $\rightarrow 3 x$ an "anonymous" function
Constructing a few simple matrices:
rand (12), rand $(12,4) \quad$ random length -12 vector or 12×4 matrix with uniform random numbers in $[0,1)$
randn(12) Gaussian random numbers (mean 0, std. dev. 1)
eye(5) 5×5 identity matrix I
linspace $(1.2,4.7,100) \quad 100$ equally spaced points from 1.2 to 4.7
$\operatorname{diagm}(\mathrm{x}) \quad$ matrix whose diagonal is the entries of x
Portions of matrices and vectors:

$\mathrm{x}[2: 12]$	the $2^{\text {nd }}$ to $12^{\text {th }}$ elements of x
$\mathrm{x}[2:$ end $]$	the $2^{\text {nd }}$ to the last elements of x
$\mathrm{~A}[5,1: 3]$	row vector of $1^{\text {st }} 3$ elements in $5^{\text {th }}$ row of A
$\mathrm{~A}[5,:]$	row vector of $5^{\text {th }}$ row of A
$\operatorname{diag(A)}$	vector of diagonals of A

Arithmetic and functions of numbers:

$3 * 4,7+4,2-6,8 / 3$ mult., add, sub., divide numbers $3^{\wedge} 7,3^{\wedge}(8+2 \mathrm{im}) \quad$ compute 3^{7} or $3^{8+2 i}$ power
sqrt($-5+0$ im) $\sqrt{-5}$ as a complex number
$\exp (12) \quad e^{12}$
$\log (3), \log 10(100) \quad$ natural $\log (\ln)$, base-10 $\log \left(\log _{10}\right)$
abs (-5), abs $(2+3$ im) absolute value $|-5|$ or $|2+3 i|$
$\sin (5 \mathrm{pi} / 3) \quad$ compute $\sin (5 \pi / 3)$
besselj $(2,6)$ compute Bessel function $J_{2}(6)$
Arithmetic and functions of vectors and matrices:
$\mathrm{x} * 3, \mathrm{x}+3$ multiply/add every element of x by 3
$\mathrm{x}+\mathrm{y} \quad$ element-wise addition of two vectors x and y
$\mathrm{A} * \mathrm{y}, \mathrm{A} * \mathrm{~B} \quad$ product of matrix A and vector y or matrix B
$\mathrm{x} * \mathrm{y} \quad$ not defined for two vectors!
$\mathrm{x} . * \mathrm{y} \quad$ element-wise product of vectors x and y
$\mathrm{x} \cdot \wedge 3 \quad$ every element of x is cubed
$\cos (\mathrm{x}), \cos (\mathrm{A}) \quad$ cosine of every element of x or A
$\exp (\mathrm{A}), \operatorname{expm}(\mathrm{A}) \quad \exp$ of each element of A, matrix $\exp e^{A}$
$\mathrm{x}^{\prime}, \mathrm{A}^{\prime} \quad$ conjugate-transpose of vector or matrix
$x^{\prime *} y, \operatorname{dot}(x, y), \operatorname{sum}(\operatorname{conj}(x) . * y) \quad$ three ways to compute $x \cdot y$
$A \backslash b$, $\operatorname{inv}(A) \quad$ return solution to $A x=b$, or the matrix $A-1$
$\lambda, \mathrm{V}=\operatorname{eig}(\mathrm{A}) \quad$ eigenvals λ and eigenvectors (columns of V) of A

Plotting (type using PyPlot first)

plot(y), plot(x,y) plot y vs. $0,1,2,3, \ldots$ or versus x
$\log \log (x, y), \operatorname{semilog} x(x, y)$, semilogy $(x, y) \quad$ log-scale plots
title("A title"), xlabel("x-axis"), ylabel("foo") set labels
legend(["curve 1", "curve 2"], "northwest") legend at upper-left grid(), axis("equal") add grid lines, use equal x and y scaling title(L"the curve $\$ \mathrm{e}^{\wedge} \backslash$ sqrt $\{\mathrm{x}\}$ \$") title with LaTeX equation savefig("fig.png"), savefig("fig.eps") save as PNG or EPS image

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

