Basics:

documentation

julialang.org installation & tutorial github.com/stevengj/julia-mit ipython notebook --profile-julia start IJulia browser execute input cell in IJulia *shift-return*

Defining/changing variables:

x = 3 define variable x to be 3 x = [1, 2, 3] array/"column"-vector (1,2,3) $y = [1 \ 2 \ 3] \quad 1 \times 3 \text{ row-vector } (1,2,3)$ A = [1 2 3 4; 5 6 7 8; 9 10 11 12]-set A to 3×4 matrix with rows 1,2,3,4 etc. change *x* from (1,2,3) to (1,7,3) x[2] = 7change A_{21} from 5 to 0 A[2,1] = 0u, v = (15.03, 1.2e-27) set u=15.03, $v=1.2\times10^{-27}$ define a function f(x)f(x) = 3xan "anonymous" function x -> 3x

Constructing a few simple matrices:

rand(12), ra	nd(12,4)	random length-12 vector or 12×4 matrix
		with uniform random numbers in $[0,1)$
randn(12)	Gaussian rand	lom numbers (mean 0, std. dev. 1)
eye(5)	5×5 identity r	natrix I
linspace(1.2	,4.7,100)	100 equally spaced points from 1.2 to 4.7
diagm(x)	matrix whose	diagonal is the entries of x

Portions of matrices and vectors:

x[2:12]	the 2^{nd} to 12^{th} elements of x
x[2:end]	the 2^{nd} to the last elements of x
A[5,1:3]	row vector of 1 st 3 elements in 5 th row of A
A[5,:]	row vector of 5^{th} row of A
diag(A)	vector of diagonals of A

Arithmetic and functions of numbers:

3*4, 7+4, 2-6, 8/3 mult., add, sub., divide numbers compute 3^7 or 3^{8+2i} power 3^7, 3^(8+2im) sqrt(-5+0im) $\sqrt{-5}$ as a complex number e^{12} exp(12) $\log(3)$, $\log(100)$ natural $\log(\ln)$, base-10 $\log(\log_{10})$ abs(-5), abs(2+3im) absolute value |-5| or |2+3i|sin(5pi/3) compute sin(5 π /3) besselj(2,6) compute Bessel function $J_2(6)$

Arithmetic and functions of vectors and matrices:

x * 3, x + 3	multiply/add every element of x by 3	
x + y	element-wise addition of two vectors x and y	
A*y, A*B	product of matrix A and vector y or matrix B	
х * у	not defined for two vectors!	
х.*у	element-wise product of vectors x and y	
x .^ 3	every element of x is cubed	
cos(x), cos(A	$\cos x$ cosine of every element of x or A	
exp(A), expm(
x', A'	conjugate-transpose of vector or matrix	
x'*y, dot(x,y), sum(conj(x).*y) three ways to compute $x \cdot y$		
$A \setminus b, inv(A)$		
λ , V = eig(A)	eigenvals λ and eigenvectors (columns of V) of A	

Plotting (type using PyPlot first)

plot(y), plot(x,y) plot y vs. 0, 1, 2, 3, ... or versus x log-scale plots loglog(x,y), semilogx(x,y), semilogy(x,y) title("A title"), xlabel("x-axis"), ylabel("foo") set labels legend(["curve 1", "curve 2"], "northwest") legend at upper-left add grid lines, use equal x and y scaling grid(), axis("equal") title(L"the curve \$e^\sqrt{x}\$") title with LaTeX equation savefig("fig.png"), savefig("fig.eps") save as PNG or EPS image MIT OpenCourseWare http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.