Lecture 30

Guidance, reflection, and refraction at interfaces between regions with different wave speeds c :
Started with the solutions of the scalar wave equation in infinite space with a constant coefficient (speed) c: plane waves $u(\mathbf{x}, \mathrm{t})=\mathrm{e}^{\mathrm{i}(\mathbf{k} \cdot \mathbf{x}-\omega \mathrm{t})}$, satisfying $\omega=\mathrm{c}|\mathbf{k}|$, where \mathbf{k} is the wavevector and indicates the propagation direction and the spatial wavelength $2 \pi / \mathbf{k} \mid$.

Now, considere what happens when a plane wave in a region with speed c_{1} is incident upon an interface at $x=0$ to another region with speed c_{2}. In general, we expect a transmitted wave and a reflected wave. At $x=0$, we will have some continuity conditions depending on the specifics of the wave equation (e.g. u continuous), and these continuity conditions must be satisfied at all y and at all t. The only way to satisfy the same continuity conditions at all y is for all of the waves to be oscillating at the same speed in the y direction at $x=0$, i.e. that they must all have the same k_{y}, and the only way to satisfy the same continuity conditions at all t is for the waves to be oscillating at the same ω. Writing $\mathrm{k}_{\mathrm{y}}=|\mathbf{k}| \sin \theta=(\omega / \mathrm{c}) \sin \theta$, we immediately obtain two results. First, the reflected angle is the same as the incident angle. Second, $\left(1 / c_{1}\right) \sin \theta_{1}=\left(1 / c_{2}\right) \sin \theta_{2}$. In optics, these are known as the Law of Equal Angles and Snell's Law respectively, but they are generic to all wave equations.

If $\mathrm{c}_{1}<\mathrm{c}_{2}$, then showed that there are no real θ_{2} solutions for a sufficiently large angle θ_{1}. In optics, you probably learned this as total internal reflection, but it is general to any wave equation. Then, if we have two interfaces, with $\mathrm{c}_{1}<\mathrm{c}_{2}$ sandwiched between two semi-infinite c_{2} regions, we can obtain guided modes that are trapped mostly in c_{1}, and can crudely be thought of as "rays" bouncing back and forth in c_{1}, "totally internally reflected". More carefully, showed that "totally internally reflected" solutions correspond to exponentially decaying solutions in c_{2}, which are called evanescent waves.

To obtain a more general picture, we imagine writing down the dispersion relation $\omega(\mathrm{k})$ for such a waveguide, looking as usual for separable eigenfunctions $u_{k}(x) e^{i(k y-o t)}$. Far from the c_{1} region, the solutions must just be planewaves propagating in c_{2}, with $\omega=\mathrm{c}_{2}|\mathbf{k}|=\mathrm{c}_{2} \mathrm{k} \sec \theta$, since k is just the y component of \mathbf{k}, where θ is the angle with the y axis. Plotting all of these solutions forms a continuous cone covering $\omega(\mathrm{k}) \geq \mathrm{c}_{2} \mathrm{k}$ (called the "light cone" in optics): this cone is all the wave solutions that propagate in c_{2}. The light cone for the c_{1} region has a lower slope (c_{1}), and hence the c_{1} region will introduce new guided solutions below the c_{2} cone which are evanescent in c_{2}. In the next lecture, I will argue that a finite-thickness c_{1} region leads to a finite number of guided modes below the c_{2} cone, and give numerical examples.

Further reading: You can find many explanations of Snell's law, total internal reflection, etcetera, online. For a treatment in the context of the scalar wave equation, see e.g. Haberman, Elementary Applied Partial Differential Equations section 4.6. For a treatment in Maxwell's equations, see any elementary electromagnetism book; our book (chapter 3) has an abstract approach with a light cone etcetera mirroring the one here.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

