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Lecture 4 

Showed that our A indeed has this -DTD form and hence is negative-definite: we derived the 
discrete Laplacian by turning two derivatives into differences, one by one, and now by writing 
the first step as a matrix we get D, while writing the second step as a matrix shows that it is -DT. 
To get a negative definite matrix (as opposed to just negative semidefinite), we additionally 
require that D be full column rank; showed that this is easy to see from DT since it is upper-
triangular.  

To do a similar analysis of the actual Laplacian, we first have to have a dot product, or inner

product. Defined an abstract ⟨u,v⟩ notation (a map from functions u and v to scalars ⟨u,v⟩) for 
inner products, as well as three key properties. First, ⟨u,v⟩ = complex conjugate of ⟨v,u⟩. Second, 
|u|2=⟨u,u⟩ must be nonnegative, and zero only if u=0. Third, it must be linear: 
⟨u,αv+βw⟩=α⟨u,v⟩+β⟨u,w⟩. (Note: some textbooks, especially in functional analysis, put the 
conjugation on the second argument instead of the first.) For functions, the most common inner 
product (though not the only choice and not always the best choice, as we will see next time) is a 
simple integral ∫uv (conjugating u for complex functions); we will look at this more next time.  

Reviewed inner products of functions. A vector space with an inner product (plus a technical 
criterion called "completeness" that is almost always satisfied in practice) is called a Hilbert space. Note that 
we include only functions with finite norm ⟨u,u⟩ in the Hilbert space (i.e. we consider only 
square-integrable functions), which throws out a lot of divergent functions and means that 
everything has a convergent Fourier series. (Another omitted technicality: we have to ignore finite 
discrepancies at isolated points, or otherwise you can have ⟨u,u⟩=0 for u(x) nonzero; there is a rigorous way to do 
this, which we will come back to later.)  

Defined the adjoint Â* of a linear operator: whatever we have to do to move it from one side of 
the inner product to the other, i.e. whatever Â* satisfies ⟨u,Âv⟩=⟨Â*u,v⟩ for all u,v. (Omitted
techicality: we must further restrict ourselves to functions that are sufficiently differentiable that ⟨u,Âu⟩ is finite, 
which is called a Sobolev space for this Â, a subset of the Hilbert space.) For matrices and ordinary vector 
dot products, this is equivalent to the "swap rows and columns" definition. For differential 
operators, it corresponds to integration by parts, and depends on the boundary conditions as well 
as on the operator and on the inner product.  

Showed that with u(0)=u(L)=0 boundary conditions and this inner product, (d2/dx2)T is real-
symmetric (also called "Hermitian" or "self-adjoint"). [There is an omitted technicality here: technically, 
we have only showed that the operator is symmetric. To show that it is Hermitian, we must also show that the 
adjoint has the same domain in the Hilbert space. Mostly we can avoid this technical distinction in real applications; 
it doesn't arise explicitly in the proofs here.]  

Not only that, but next time we will show that d2/dx2 is negative-definite on this space, since 
⟨u,u''⟩=-∫|u'|2, and u'=0 only if u=constant=0 with these boundary conditions.  

Showed that the proof of real eigenvalues from 18.06 carries over without modification for 
Hermitian operators; similarly for the proof of orthogonal eigenvectors, hence the orthogonality 
of the Fourier sine series. Similarly for the proof of negative eigenvalues.  

https://en.wikipedia.org/wiki/Square-integrable_function
http://en.wikipedia.org/wiki/Domain_of_a_function
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So, many of the key properties of d2/dx2 follow "by inspection" once you learn how to transpose 
operators (integrate by parts). And this immediately tells us key properties of the solutions, if we 
assume the spectral theorem: Poisson's equation has a unique solution, the diffusion equation has 
decaying solutions, and the wave equation has oscillating solutions. 

Further reading: Notes on function spaces, Hermitian operators, and Fourier series that I once 
wrote for 18.06 (slightly different notation). Textbook, section 3.1: transpose of a derivative. The 
general topic of linear algebra for functions leads to a subject called functional analysis; a 
rigorous introduction to functional analysis can be found in, for example, the book Basic Classes 
of Linear Operators by Gohberg et al. There are some technicalities that I omit: a differential 
operator is only called "self-adjoint" if it is equal to its adjoint and is "densely defined", and 
showing that an operator equals its adjoint furthermore requires an extra step of showing that Â 
and Â* act on the same domains. 

http://web.mit.edu/18.06/www/Fall07/operators.pdf
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