Lecture 12

Using this Kronecker-product machinery, constructed A for $\mathrm{N}_{\mathrm{x}}=10$ and $\mathrm{N}_{\mathrm{y}}=15$ for $\mathrm{L}_{\mathrm{x}}=1$ and $\mathrm{L}_{\mathrm{y}}=1.5$ in Julia. Visualized the pattern of nonzero entries with spy. Solved for the eigenfunctions, and plotted a few; to convert a column vector \mathbf{u} back into a 2 d matrix, used reshape $\left(\mathbf{u}, \mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$, and plotted in 3 d with the surf command. The first few eigenfunctions can be seen to roughly match the $\sin \left(n_{x} \pi x / L_{x}\right) \sin \left(n_{y} \pi x / L_{y}\right)$ functions we expect from separation of variables. However, $\mathrm{N}_{\mathrm{x}}=10, \mathrm{~N}_{\mathrm{y}}=15$ is rather coarse, too coarse a discretization to have a really nice (or accurate) picture of the solutions.

In order to increase N_{x} and N_{y}, however, we have a problem. If the problem has $\mathrm{N}=\mathrm{N}_{\mathrm{x}} \mathrm{N}_{\mathrm{y}}$ degrees of freedom, we need to store N^{2} numbers ($8 \mathrm{~N}^{2}$ bytes) just to store the matrix A, and even just solving $\mathrm{Ax}=\mathrm{b}$ by Gaussian elimination takes about N^{3} arithmetic operations. Worked through a few numbers to see that even $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=100$ would have us waiting for 20 minutes and needing a GB of storage, while 3 d grids (e.g. $100 \times 100 \times 100$) seem completely out of reach. The saving grace, however, is sparsity: the matrix is mostly zero (and in fact the 5-point stencil A has $<5 \mathrm{~N}$ nonzero entries). This means that, first, you can store only the nonzero entries, greatly reducing storage. Second, it turns out there are ways to exploit the sparsity to solve $\mathrm{Ax}=\mathrm{b}$ much more quickly, and there are also quick ways to find a few of the eigenvalues and eigenvectors.

In Julia, you exploit sparsity by using the sparse command and friends to create sparse matrice. Once you have a sparse matrix, Matlab automatically uses algorithms to exploit sparsity if you solve $A x=b$ by $x=A \backslash b$ and use the eigs function to find a few eigenvalues (instead of eig).

Starting with the ∇^{2} operator on a square grid (from last lecture), showed how we can convert to any other Ω shape with Dirichlet boundaries just by taking a subset of the rows/cols. Looked at a couple of triangular domains, and recovered the Bessel solutions for a circular domain.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

