
Lecture 9 

Finished consideration of separability of ∇2u=λu in a 2d box, from notes: discussed orthogonality 
of these eigenfunctions. Also showed that separability breaks down, in general, for non-constant 
coefficients in the box.  

More separation of variables: cylindrical case of a cylinder of radius R with Dirichlet boundary 
conditions. Show that the Laplace eigenequation here is indeed separable into a function of θ 
multiplied by a function of r, satisfying separate 1d ODEs. Show that the θ dependence is 
sin(mθ) or cos(mθ) (or any linear combination), where m is an integer (in order to be periodic in 
θ). The r dependence satisfies a more complicated 2nd-order ODE that we can't solve by hand 
(even if you have taken 18.03).  

At this point, it's more a historical question than a mathematical one: has someone solved this 
equation before, and if so is there a standard name (and normalization, etc) for the solutions? In 
fact, that is the case here (not surprisingly, since the Laplacian is so important): our r equation is 
an instance of Bessel's equation, and the solutions are called Bessel functions. The canonical 
two Bessel functions are Jm and Ym: there is a standard convention defining the normalization, 
etcetera, of these, but the important thing for our purposes is that J is finite at r=0 and Y blows up 
at the origin. In Julia, SciPy, Matlab, and similar packages, these are supplied as built-in 
functions (e.g. besselj and bessely), and we use Julia to plot a few of them to get a feel for what 
they look like: basically, sinusoidal functions that are slowly decaying in r.  

To get eigenfunctions, we have to impose boundary conditions. Finite-ness of the solution at r=0 
means that we can only have Jm(kr) solutions, and vanishing at r=R means that kR must be a root 
of Jm. We have to find these roots numerically, but this is easy to do, and we obtain a discrete set 
of eigenfunctions and eigenvalues.  

From the general orthogonality of the Laplacian eigenfunctions, we can derive an orthogonality 
relation for Bessel functions, and by evaluating the integral numerically we can see that this 
orthogonality is indeed the case.  

By looking at Bessel's equation asymptotically, we find that it reduces to sines and cosines for 
large r; more careful considerations show that it must actually reduce to sines and cosines 
multiplied by 1/√r, and we can verify this from the plot. Conversely, for small r we show that it 
goes as either rm (Jm) or 1/rm (Ym, except for m=1 where Y0 is proportional to log r); this is why 
we have one finite solution and one divergent one at r=0. (There are many, many more properties 
of Bessel functions that one can derive analytically, but that is not our major concern here.)  

Further reading: The Wikipedia page on Bessel functions has many plots, definitions, and 
properties, as well as links to standard reference works.

http://www.mathworks.com/help/techdoc/ref/besselj.html
http://www.mathworks.com/help/techdoc/ref/bessely.html
http://en.wikipedia.org/wiki/Bessel_function
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