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1 Overview
Separation of variables is a technique to reduce
the dimensionality of PDEs by writing their solutions
u(~x, t) as a product of lower-dimensional functions—
or, more commonly, as a superposition of such func-
tions. Two key points:

• It is only applicable in a handful of cases, usually
from symmetry: time invariance, translation
invariance, and/or rotational invariance.

• Most of the analytically solvable PDEs are such
separable cases, and therefore they are ex-
tremely useful in gaining insight and as (usually)
idealized models.

I will divide them into two main categories, which
we will handle separately. Separation in time sep-
arates the time-dependence of the problem, and is
essentially something we have been doing already
via eigensolution expansions, under a different name.
Separation in space separates the spatial depen-
dence of the problem, and is mainly used to help us
find the eigenfunctions of linear operators Â.

2 Separation in time
If we have a time-invariant linear PDE of the form

∂u

assuming that the un form a basis for the solutions
of interest, where αn are constant coefficients deter-
mined by the initial conditions. This, in fact, is a sum
of separable solutions: eλntun(~x) is the product of
two lower-dimensional functions, a function of time
only (eλnt) and a function of space only (un). This is
separation of variables in time. If we know alge-
braic properties of Â, e.g. whether it is self-adjoint,
definite, etcetera, we can often then conclude many
properties of u(~x, t) even if we cannot solve analyti-
cally for the eigenfunctions un. We have also used a
similar technique for

∂2u

ˆ= Au,
∂t

that is where Â is independent of time, we have ap-
proached this by solving for the eigenfunctions un
(Âun = λnun) and then expanding the solution as

u(~x, t) =
∑

α eλnt
n un(~x),

n

∂t2
= Âu,

in which case we obtained an expansion of the form

u(~x, t) =
∑
n

[αn cos(ωnt) + βn sin(ωn] t)un(~x),

where ωn =
√
−λn and the coefficients αn and βn are

determined by the (two) initial conditions on u.
More generally, assuming that we have a com-

plete basis of eigenfunctions of Â, we could write any
u(~x, t) in the form

u(~x, t) =
∑
n

cn(t)un(~x) (1)

for some time-dependent coefficients cn. This is
called a sum of separable solutions if the cn(t)
are determined by ODEs that are independent for
different n, so that each term cnun is a solution of
the PDE by itself (for some initial conditions). Such
independence occurs when the u terms in the PDE
are time-invariant in the sense that it is the same
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equation, with the same coefficients, at every t. For
example, PDEs of the form(∑d ∂m

am
m=1

)
∂

)
ˆu = Au+ f(~x, t

tm

have separable solutions if the coefficients am are con-
stants and Â is time-independent, even though the
source term f may depend on time, because one can
expand f in the un basis and still obtain a separate
(inhomogeneous) ODE for each cn.

2.1 “Generalization”

One often sees separation in time posed in a “gen-
eral” form as looking for solutions u(~x, t) of the form
T (t)S(~x) where T is an unknown function of time
and S is an uknown function of space. In practice,
however, this inevitably reduces to finding that S
must be an eigenfunction of Â in equations like those
above (and otherwise you find that separation of time
doesn’t work), so I prefer the linear-algebra perspec-
tive of starting with an eigenfunction basis.

Just for fun, however, we can do it that way. Con-
sider Âu = ∂u

∂t , for example, and suppose we pretend
to be ignorant of eigenfunctions. Instead, we “guess”
a solution of the form u = T (t)S(~x) and plug this in
to obtain: ˆTAS = T ′S, then divide by TS to obtain

ÂS

S
=
T ′

eigenvalues λn(t) that vary with time. One can still
expand the solution u(~x, t) in this basis at each t, in
the form of eq. (1), but it obviously no longer sepa-
rable because un now depends on t. Less obviously,
if one substitutes eq. (1) back into the PDE, one will
find that the cn equations are now coupled together
inextricably in general. The resulting equations for
the cn are called coupled-mode equations, and their
study is of great interest, but it does not fall under
the category of separation of variables.

3 Separation in space

Spatial separation of variables is most commonly ap-
plied to eigenproblems Âun = λnun, and we reduce
this to an eigenproblem in fewer spatial dimensions
by writing the un(~x) as a product of functions in
lower dimensions. Almost always, spatial separation
of variables is applied in one of only four cases, as
depicted in figure 1:

• A “box” domain Ω (or higher-dimensional ana-
logues), within which the PDE coefficients are
constant, and with boundary conditions that are
invariant within each wall of the box. We can
then usually find separable solutions of the form
un(~x) = X(x)Y (y) · · · for some univariate func-
tions X, Y , etc.

. Â ΩT • A rotationally invariant and domain (e.g.
a circle in 2d or a spherical ball in 3d), with

Since the left-hand side is a function of ~x only, and rotationally invariant boundary conditions and
the right-hand side is a function of t only, in order for rotationally invariant coefficients [although we
them to be equal to one another for all ~x and for all t can have coefficients varying with r]. In this
they must both equal a constant. Call that constant case, as a consequence of symmetry, it turns out
λ. Then T ′ = λT and hence T (t) = T (0)eλt, while that we can always find separable eigenfunctions
ÂS = λS is the usual eigenproblem. un(~x) = R(r)P (angle) for some functions R and

P . In fact, it turns out that the angular depen-
2.2 Similar “coupled-mode” equations dence P is always of the same form—for scalar

(eigenbasis, but not separable) u, one always obtains P (φ) = eimφ in 2d (where
m is an integer) and P (θ, φ) = Y`,m(θ, φ) in 3d

On the other, one does not usually have separable [where ` is a positive integer,m is an integer with
solutions if Â(t) depends on time. In that case, one |m| ≤ `, and Y`,m is a “spherical harmonic” func-
could of course solve the eigenequation Âu = λu tion ∼ P (cos θ)eimφ`,m for Legendre polynomials
at each time t to obtain eigenfunctions un(~x, t) and P`,m].
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Ω" Ω" Ω"

box" rota)onal"symmetry" transla)onal"symmetry"

[constant"
"coefficients]"

[rota)on5invariant"
"coefficients"c(r)"only]"

[transla)on5invariant"
"coefficients"c(y,…)"only]"

x'

+∞"–∞"

u(x)"="X(x)Y(y)…" u(x)"="R(r)P(angles)"
""""""""="R(r)eimφ"in"2d"

u(x)"="eikxF(y,…)"

Figure 1: Most common cases where spatial separation of variables works: a box, a ball (rotational invari-
ance), and an infinite tube (translational invariance).

• A translationally invariant problem, e.g. invari-
ant (hence infinite) Ω in the x direction with x-
invariant boundary conditions and coefficients.
In this case, as a consequence of symmetry, it
turns out that we can always find separable
eigenfunctions un(~x) = X(x)F (y, . . .), and in
fact it turns out that X always has the same
form X(x) = eikx for real k (if we are restrict-
ing ourselves to solutions that do not blow up at
infinity).

• Combinations of the above cases. e.g. an infinite
circular cylinder in 3d with corresponding sym-
metry in Â has separable solutions R(r)eimφ+ikz.

The fact that symmetry leads to separable solutions
is an instance of a much deeper connection between
symmetry and solutions of linear PDEs, which is de-
scribed by a different sort of algebraic structure that
we won’t really get to in 18.303: symmetries are de-
scribed by a symmetry “group,” and the relationship
between the structure of this group and the eigenso-
lutions is described in general terms of group repre-
sentation theory.1 In the case of rotational symme-

try, expanding in the basis of eigenfunctions leads to
a Fourier series in the φ direction (a sum of terms
∼ eimφ), while in the case of translational symmetry
one obtains a Fourier transform (a sum, or rather an
integral, of terms ∼ eikx). In 18.303, we will obtain
the separable solutions by the simpler expedient of
“guessing” a certain form of un, plugging it in, and
showing that it works, but it is good to be aware that
there is a deeper reason why this works in the cases
above (and doesn’t work in almost all other cases)
and that if you encounter one of these cases you can
just look up the form of the solution in a textbook.

In addition to the above situations, there are a
few other cases in which separable solutions are ob-
tained, but for the most part they aren’t cases that
one would encounter by accident; they are usually
somewhat contrived situations that have been explic-
itly constructed to be separable.2

1See, for example, Group Theory and Its Applications in
Physics by Inui et al., or Group Theory and Quantum Me-
chanics by Michael Tinkham.

2For example, the separable cases of the Schrödinger oper-
ator Â = −∇2 + V (~x) were enumerated by Eisenhart, Phys.
Rev. 74, pp. 87–89 (1948). An interesting nonsymmetric sep-
arable construction for the Maxwell equations was described
in, for example, Watts et al., Opt. Lett. 27, pp. 1785–1787
(2002).

3



3.1 Example: ∇2 in a 2d box

As an example, consider the operator Â = ∇2 in a
2d “box” domain Ω = [0, Lx]× [0, Ly], with Dirichlet
boundaries u|∂Ω = 0. Even before we solve it, we
should remind ourselves of the algebra properties we
already know. This Â is self-adjoint and negative-
definite under the inner product 〈u, v〉 = uv¯ =

Ω´ Lx dx dy
0

´ Ly

´
0

u(x, y)v(x, y), so we should expect real
eigenvalues λ < 0 and orthogonal eigenfunctions.

We will “guess” separable solutions to the eigen-
problem Âu = λu, of the form

u(~x) = X(x)Y (y),

and plug this into our eigenproblem. We need to
check (i) that we can find solutions of this form and
(ii) that solutions of this form are sufficient (i.e. we
aren’t missing anything—that all solutions can be ex-
pressed as superpositions of separable solutions). Of
course this isn’t really a guess, because in reality we
would have immediately recognized that this is one of
the handful of cases where separable solutions occur,
but let’s proceed as if we didn’t know this. Plugging
this u into the eigenequation, we obtain

∇2u = X ′′Y +XY ′′ = λu = λXY,

where primes denote derivatives as usual. In order to
obtain such a separable solution, we must be able to
separate all of the x and y dependence into separate
equations, and the trick is (always) to divide both
sides of the equation by u. We obtain:

X ′′

X
+
Y ′′

= λ.
Y

Observe that we have a function X ′′/X of x alone
plus a function Y ′′/Y of y alone, and their sum is a
constant λ for all values of x and y. The only way
this can happen is if X ′′/X and Y ′′/Y are themselves
constants, say α and β respectively, so that we have
two separate eigenequations

X ′′ = αX,

Y ′′ = βY,

nx=1,$ny=1$ nx=2,$ny=2$ nx=2,$ny=1$ nx=1,$ny=2$

Figure 2: Example separable eigenfunctions unx,ny
of

∇2 in a 2d rectangular domain. (Blue/white/red =
negative/zero/positive.)

with λ = α + β. But we have already solved these
equations, in one dimension, and we know that the so-
lutions are sines/cosines/exponentials! More specif-
ically, what are the boundary conditions on X and
Y ? To obtain u(0, y) = X(0)Y (y) = 0 = u(Lx, y) =
X(Lx)Y (y) for all values of y, we must have X(0) =
X(Lx) = 0 (except for the trivial solution Y = 0 =⇒
u = 0). Similarly, Y (0) = Y (Ly) = 0. Hence, this is
the familiar 1d Laplacian eigenproblem with Dirichlet
boundary conditions, and we can quote our previous
solution:

x
Xnx(x) sin

(
nxπ

=
Lx

)
, αnx = −

(
nxπ

Lx

)2

,

Yny
(x) = sin

(
nyπy

Ly

)
, βny

= −
(
nyπ

2

Ly

)
,

for positive integers nx = 1, 2, . . . and ny = 1, 2, . . .,
so that our final solution is

x
unx,ny

(x, y = sin

(
nxπ

)
Lx

)
sin

(
nyπy

Ly

)
,

λnx,ny
= −π2

[(
nx
Lx

)2

+

(
ny

2

Ly

) ]
.

Some examples of these eigenfunctions are plotted in
figure 2. Note that λ is real and < 0 as expected.
Furthermore, as expected the eigenfunctions are or-
thogonal:

〈unx,ny
, un′

x,n
′
y
〉 = 0 if nx 6= nx′ or ny 6= n′y
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because the 〈unx,ny , un′ ,n′ 〉 integral for separable u
factors into two separate

x

in
y

tegrals over x and y,

Lx

〈unx,ny
, unx

′ ,n′
y
〉 =

[ˆ
Xnx

(x)Xn′
x
(x)dx

0

]

·

[ˆ Ly

Yny (y)Yn′
y
(y)dy

0

]
,

and so the familiar orthogonality of the 1d Fourier
sine series terms applies.

So, separable solutions exist. The next question is,
are these enough? We need to be able to construct
every function u in our Hilber (or Sobolev) space as
a superposition of these separable functions. That is,
can we write “any” u(x, y) as

u(x, y) =
∑

cnx,ny
unx,ny

(x, y)
nx,ny

∞

=
n

∑ ∞

x=1

∑ x
cnx,ny sin

n =1

(
nxπ

y
Lx

)
sin

(
nyπy

Ly

)
(2)

for some coefficients cnx,ny
[=

〈unx,ny
, u〉/〈unx,ny

, unx,ny
〉 because of the or-

thogonality of the basis]? The answer is yes (for
any square-integrable u, i.e. finite 〈u, u〉) because we
simply have a combination of two Fourier-sine series,
one in x and one in y. For example, if we fix y and
look as a function of x, we know we can write u(x, y)
as a 1d sine series in x:

u(x, y) =
∞∑

nx=1

cnx
(y) sin

(
nxπx

Lx

)
,

with different coefficients cnx
for each y. Further-

more, we can write cnx
(y) itself as a sine series in y

(noting that cnx must vanish at y = 0 and y = Ly by
the boundary conditions on u):

cnx(y) =

∞∑
ny=1

cnx,ny sin

(
nyπy

3.2 Non-separable examples
If the problem were not separable, something would
have gone wrong in plugging in the separable form
of u(~x) and trying to solve for the 1d functions in-
dividually. It is not hard to construct non-separable
example problems, since almost all PDEs are not sep-
arable. However, let’s start with the box problem
above, and show how even a “small” change to the
problem can spoil separability.

For example, suppose that we keep the same box
domain Ω and the same boundary conditions, but
we change our operator Â to Â = c(~x)∇2 with
some arbitrary c(~x) > 0. This operator is still self-
adjoint and negative definite under the inner product
〈u, v〉 =

´
uv¯ /c

Ω
. But if we try to plug u = X(x)Y (y)

into the eigenequation Âu = λu and follow the same
procedure as above to try to separate the x and y
dependence, we obtain

X ′′

Ly

)
for coefficients cnx,ny

that depend on nx. The combi-
nation of these two 1d series is exactly equation (2)!

X
+
Y ′′

Y
=

λ

c(x, y)
.

On the left-hand side, we still have a function of x
alone plus a function of y alone, but on the right-
hand side we now have a function of both x and y.
So, we can no longer conclude that X ′′/X and Y ′′/Y
are constants to obtain separate eigenequations for
X and Y . Indeed, it is obvious that, for an arbi-
trary c, we cannot in general express λ/c as the sum
of functions of x and y alone. (There are some c
functions for which separability still works, but these
cases need to be specially contrived.)

5



MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



