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Abstract x = 0. That is, one would like the function δ(x) = 0
for all x 6= 0, but with δ(x)dx = 1 for any in-

These notes give a brief introduction to the mo- tegration region that includes

´
x = 0; this concept

tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta
which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand-
low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding
and other nice things. This generalization is in- a Green’s function. It is also the simplest way to
creasingly important the more you work with linear consider physical effects that are concentrated within
PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac-
tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details
low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of
functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a
great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts
a triangle shape is not twice differentiable, making some momentum to an object, and so on. The prob-
the wave equation problematic with traditional func- lem is that there is no classical function δ(x) having
tions). Any serious work with PDEs will eventually these properties.
run into the concept of a “weak solution,” which is For example, one could imagine constructing this
essentially a version of the distribution concept. function as the limit:{
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1 What’s wrong with functions? δ(x) = lim
∆x→0+

The most familiar notion of a function f(x) is a map
from real numbers R to real numbers R (or maybe
complex numbers C); that is, for every x you have
a value y = f(x). Of course, you may know that
one can define functions from any set to any other
set, but at first glance it seems that R → R func-
tions (and multi-dimensional generalizations thereof)
are the best-suited concept for describing most phys-
ical quantities—for example, velocity as a function
of time, or pressure or density as a function of posi-
tion in a fluid, and so on. Unfortunately, such func-
tions have some severe drawbacks that, eventually,
lead them to be replaced in some contexts by an-
other concept: distributions (also called generalized
functions). What are these drawbacks?

1.1 No delta functions
For lots of applications, such as those involving PDEs
and Green’s functions, one would like to have a func-
tion δ(x) whose integral is “concentrated” at the point

∆x 0 ≤ x < ∆x
0 otherwise

= lim
∆x→0+

δ∆x(x)?

For any ∆x > 0, the function δ∆x(x) at right has
integral = 1 and is zero except near x = 0. Un-
fortunately, the ∆x → 0 limit does not exist as an
ordinary function: δ∆x(x) approaches ∞ for x = 0,
but of course ∞ is not a real number.

Informally, one often sees “definitions” of δ(x) that
describe it as some mysterious object that is “not
quite” a function, which = 0 for x 6= 0 but is unde-
fined at x = 0, and which is “only really defined inside
an integral” (where it “integrates” to 1).1 This may
leave you with a queasy feeling that δ(x) is somehow

1Historically, this unsatisfactory description is precisely
how δ(x) first appeared, and for many years there was a corre-
sponding cloud of guilt and uncertainty surrounding any usage
of it. Most famously, an informal δ(x) notion was popularized
by physicist Paul Dirac, who in his Principles of Quantum Me-
chanics (1930) wrote: “Thus δ(x) is not a quantity which can
be generally used in mathematical analysis like an ordinary
function, but its use must be confined to certain simple types
of expression for which it is obvious that no inconsistency can
arise.” You know you are on shaky ground, in mathematics,
when you are forced to appeal to the “obvious.”
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not real or rigorous (and therefore anything based on u =6 0. . . except for u(x) that are only nonzero for iso-
it may be suspect). For example, integration is an lated points. And with functions like S(x) there are
operation that is classically only defined for ordinary all sorts of apparently pointless questions about what
functions, so it may not even be clear (yet) what “

´
” value to assign exactly at the discontinuity. It may

means when we write “
´
δ(x)dx”. likewise seem odd to care about what value to assign

the slope of |x| at x = 0; surely any value in [−1, 1]

1.2 Not all functions are differentiable should do?

Most physical laws can be written in the form of 1.4 Limits and derivatives
derivatives, but lots of functions are not differen- cannot always be interchanged
tiable. Discontinuous functions arise all of the time
at the interface between two materials (e.g. think In numerical and analytical PDE methods, we are
of the density at the interface between glass and air). continually writing functions as limits. A Fourier se-
Of course, at a microscopic level you could argue that ries is a limit as the number of terms goes to infinity.
the quantum wavefunctions might be continuous, but A finite-difference method solves the problem in the
one hardly wishes to resort to atoms and quantum limit as ∆x → 0. We initially find the Green’s func-
mechanics every time a material has a boundary! tion as the limit of the response to a box-like function

The classic example of a discontinuous function is that is nonzero outside of a width ∆x, and then take
the Heaviside step function: the limit ∆x → 0. After all of these kinds of things,

we eventually substitute our solution back into the
1 x 0 PDE, and we assume that the limit of the solution is

S(x) =

{
≥

.
0 x < 0 still a solution. In doing so, however, we usually end

up interchanging the limits and the differentiation.
The derivative S′(x) is zero everywhere except at x = For example, we usually differentiate a Fourier series
0, where the derivative does not exist—the slope at by:
x = 0 is “infinity.” Notice that H ′(x) very much

x d
resembles δ(x), and δ(x′)dx′ would certainly look∞
something like S(x)

´
if it existed (since the “integral”

of δ should be 1 for x > 0)—this is not a coincidence,
and it would be a shame not to exploit it!

A function doesn’t need to be discontinuous to lack
a derivative. Consider the function |x|: its derivative
is +1 for x > 0 and −1 for x < 0, but at x = 0
the derivative doesn’t exist. We say that |x| is only
“piecewise” differentiable.

Note that S(x) is very useful for writing down all
sorts of functions with discontinuities. |x| = xS(x)−
xS(−x), for example, and the δ∆x(x) “box” function
on the right-hand-side of the δ(x) “definition” above
can be written δ∆x(x) = [S(x)− S(x−∆x)]/∆x.

1.3 Nagging worries about
discrepancies at isolated points

When we try to do linear algebra with functions, we
continually find ourselves worrying about excluding
odd caveats and counterexamples that have to do
with finite discrepancies at isolated points. For ex-
ample, a Fourier series of a square-integrable function
converges everywhere. . . except at isolated points of
discontinuity [like the point x = 0 for S(x), where
a Fourier series would converge to 0.5]. As an-
other example, 〈u, v〉 =

on functions and a norm

´
uv¯ defines an inner prod-

uct ‖u‖2 = 〈u, u〉 > 0 for

dx

∞∑
n=1

an sin(nπx) =
∞∑
n=1

an
d

nπ
n

∑∞
sin(nπx) = an cos(nπx),

dx
=1

but this is not always true if we interpret “=” in the
usual sense of being true for every x. The general
problem is that one cannot always interchange limits
and derivatives, i.e. d

dx lim 6= lim d∑ dx . (Note that
∞
n=1 is really a limit lim N

N .)→∞ n=1

A simple example of this is the

∑
function−ε x < −ε {

1 −ε < x < ε
fε(x) = x −ε ≤ x ≤ ε , fε

′( = x) .
0

ε x > ε
|x| > ε

The limit as ε → 0 of fε(x) is simply zero. But
fε
′(0) = 1 for all ε, so

d
0 =

dx

(
lim
ε→0

fε

)∣∣∣∣
x=0

6= 1 = lim
ε→0

(
d

dx
fε

∣∣∣∣
x=0

)
.

Notice, however, that this mismatch only occurs at
one isolated point x = 0. The same thing happens
for Fourier series: differentiation term-by-term works
except at isolated points. Thus, this problem returns
to the complaint in the previous section 1.3.

1.5 Too much information

A function f(x) gives us a value at every point x, but
does this really correspond to a measurable quantity
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in the physical universe? How would you measure the
velocity at one instant in time, or the density at one
point in a fluid? Of course, your measurement device
could be very precise, and very small, and very fast,
but in the end all you can ever measure are averages
of f(x) over a small region of space and/or time.

But an average is the same thing as an integral´
f(x) over the averaging region. More generally, in-

stead of averaging f(x) uniformly in some region, we
could average with some weights φ(x) (e.g. our de-
vice could be more sensitive to some points than oth-
ers). Thus, the only physical question we can ever
ask about a function is the value of an integralˆ ∞

f(x)φ(x)dx
−∞

of f(x) against a test function φ(x).
But if all we can ever ask is such an integral, why

are we worrying about isolated points? In fact, why
do we even define f(x) to have values at points at
all? In a physical application of mathematics, per-
haps we should only define things that we can mea-
sure! This insight fixes every one of the problems
above, and leads to the concept of distributions.

2 Distributions
The old kind of function is a map from R→ R: given
an x, we get a value f(x). Following section 1.5,
this is too much information; we can only ask for an
“average” value given some weight function φ(x). So,
we make a new definition of “function” that provides
this information, and only this information:

• f is a rule that given any test function φ(x) re-
turns a number f{φ}.2

This new definition of a “function” is called a dis-
tribution or a generalized function. We are no
longer allowed to ask the value at a point x. This
will fix all of the problems with the old functions from
above. However, we should be more precise about our
definition. First, we have to specify what φ(x) can
be:

• φ(x) is an ordinary function R → R (not a dis-
tribution) in some set D. We require φ(x) to be
infinitely differentiable. We also require φ(x) to
be nonzero only in some finite region (the “sup-
port” of ): 3φ φ is a smooth “bump” function.

[The generalization to functions φ(~x) for ~x ∈ Rd, with
the distributions corresponding to d-dimensional in-
tegrals, is very straightforward, but we will stick to
d = 1 for simplicity.] Second,4 we require that f{φ}
act like integration in that it must be linear :

• f{αφ1 + βφ2} = αf{φ1}+ βf{φ2} for any num-
bers α, β ∈ R and any φ1, φ2 ∈ D.

Thus, f is a linear map from D → R, and the set
of all distributions for a given set of test functions
D is sometimes denoted D′. There are two classes of
distributions: regular and singular distributions.

2.1 Regular distributions
from ordinary functions f(x)

The most obvious way to define a distribution f{φ} is
simply an ordinary integral of an ordinary function:
given an ordinary function f(x), we can define the
distribution:

∞
f{φ} =

ˆ
f(x)φ(x)dx.

−∞

This is called a regular distribution.
Not all ordinary functions f(x) define regular dis-

tributions: we must have φ D.
This reduces to requiring

´
fφ finite for all ∈

that b |f(x)|dx <
a

∞ for
all intervals [a, b] (f is “locally in

´
tegrable”).

2.2 Singular distributions
& the delta function

Although the integral of an ordinary function is one
way to define a distribution, it is not the only way.
For example, the following distribution is a perfectly
good one:

δ{φ} = φ(0).

This rule is linear and continuous, there are no
weird infinities, nor is there anything spooky or non-
rigorous. Given a test function φ(x), the δ(x) distri-
bution is simply the rule that gives φ(0) from each φ.
δ(x), however, does not correspond to any ordinary
function—it is not a regular distribution—so we call
it a singular distribution.

• Notation: when we write “ dx”, w
don’t mean an

´
δ(x)φ(x) e

ordinary integral, we really mean
2Many authors use the notation f, φ = (0).〈 〉 instead of f{φ}, but δ φ φ

we are already using 〈·, ·〉 for inner products and I don’t want
{ }

to confuse matters.
3Alternatively, one sometimes loosens this requirement to

merely say that φ(x) must → 0 quickly as x → ±∞, and in
particular that xnφ(x)→ 0 as x→ ±∞ for all integers n ≥ 0.

4There is also a third requirement: f{φ} must be continu-
ous, in that if you change φ(x) continuously the value of f{φ}
must change continuously. In practice, you will never violate
this condition unless you are trying to.
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Furthermore, when we say δ(x − x′), we just mean
the distribution δ(x− x′){φ} = φ(x′).

If we look at the “finite-∆x delta” approximation
δ∆x(x) from section 1.1, that defines the regular dis-
tribution:

1
δ∆x{φ} = )

∆

ˆ ∆x

φ(x dx,
x 0

which is just the average of φ(x) in [0,∆x]. Now,
however, viewed as a distribution, the limit ∆x 0
is perfectly well defined:5

→
lim∆x 0 δ∆x{φ =→ } φ(0) =

δ{φ}, i.e. δ∆x → δ.
Of course, the δ distribution is not the only singular

distribution, but it is the most famous one (and the
one from which many other singular distributions are
built). We will see more examples later.

2.3 Derivatives of distributions
& differentiating discontinuities

How do we define the derivative f ′ of a distribution?
Well, at the very least we want it to be the same as
the ordinary derivative when f is a regular distribu-
tion f(x) that happens to be differentiable in the or-
dinary sense. In that case, f ′{φ} =

f(x)φ′(x)dx = f φ′ , where we

´
f ′(x)φ(x)dx =

−
´

{− } have integrated
by parts and used the fact that φ(x) is zero outside a
finite region to eliminate the boundary terms. This
is such a nice result that we will use it to define the
derivative of any distribution:

• The distributional derivative f ′ of f{φ} is
given by the distribution f ′{φ} = f{−φ′}, where
φ′(x) is the ordinary derivative of φ(x).

(This is sometimes also called a weak derivative.)
Since the test functions φ(x) were required to be in-
finitely differentiable, we have a remarkable conse-
quence: every distribution is infinitely differentiable
(in the distributional sense).

For example, since δ{φ} = φ(0), it immediately
follows that the derivative of a delta function is the
distribution δ′{φ} = δ{−φ′} = −φ′(0).

The most important consequence of this definition
is that even discontinuous functions are differ-
entiable as distributions, and their derivatives give
delta functions for each discontinuity. Consider the
regular distribution S defined by the step function
S(x):

S{φ} =
ˆ ∞

S(x)φ(x)dx =
ˆ ∞

φ(x)dx.
−∞ 0

It immediately follows that the distributional deriva-
tive of the step function is

S′{φ} = S{−φ′} = −
ˆ ∞

φ′(x)dx = x
∞
0

0

−φ( )|

= φ(0)− ��
�φ(∞) = φ(0).

But this is exactly the same as δ{φ}, so we immedi-
ately conclude:

5We have used the fact that φ(x) is required to be continu-
ous, from which one can show that nothing weird can happen
with the average of φ(x) as ∆x→ 0.

S′ = δ .
Since any function with jump discontinuities can be

written in terms of S(x), we find that the derivative
of any jump discontinuity gives a delta function mul-
tiplied by the magnitude of the jump. For example,
consider:

f(x) =

{
x2 x < 3

= x2 + (x3

x3 x ≥ 3
− x2)S(x− 3).

The distributional derivative works just like the ordi-
nary derivative, except that ′ = , so6S δ

f ′(x) = 2x+ (3x2 − 2x)S(x− 3) + (33{ − 32)δ(x− 3)

2x x < 3
= 18δ(x− 3) + ,

3x2 x ≥ 3

where of course by f ′(x) I mean the distribution
f ′{φ}. It is common to be “casual” with notation in
this way for distributions, treating them like ordinary
functions, but you have to remember that you can’t
evaluate them at any point x, you can only evaluate
them for test functions φ(x).

2.4 Isolated points

With ordinary functions, we had to make lots of
caveats about isolated points. No more with distri-
butions. The key point is that two different ordinary
functions can define the same distribution. Consider,
for example, the function

f(x) =

{
1 x = 0

.
0 otherwise

This is not a delta function: it is finite at x = 0, and
is a perfectly acceptable function. It also defines a
regular distribution:

f{φ} =
ˆ ∞

f(x)φ(x)dx = 0.
−∞

6I’m being a bit glib here. How do we know that the product
rule works the same? Below, we will rigorously define what it
means to multiply a distribution by a smooth function like
x3 − x2, and the ordinary product rule will follow.
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Think about it: no matter what φ(x) is, the integral
must give zero because it is only nonzero (by a fi-
nite amount) at a single point, with zero area (“zero
measure” for the pure-math folks). Thus, in the dis-
tribution sense, we can say perfectly rigorously that

f = 0

even though f(x) 6= 0 in the ordinary-function sense!
In general, any two ordinary functions that only

differ (by finite amounts—not delta functions!) at
isolated points (a “set of measure zero”) define the
same regular distribution. We no longer have to
make caveats about isolated points—finite values at
isolated points make no difference to a distribution.

For example, there are no more caveats about the
Fourier series or Fourier transforms: they converge,
period, for distributions.7

Also, there is no more quibbling about the value of
things like S(x) right at the point of discontinuities.
It doesn’t matter, for distributions. Nor is there quib-
bling about the derivative of things like |x| right at
the point of the slope discontinuity. It is an easy mat-
ter to show that the distributional derivative of |x| is
simply 2S(x) − 1, i.e. it is the regular distribution
corresponding to the function that is +1 for x > 0
and −1 for x < 0 (with the value at x = 0 being
rigorously irrelevant).

2.5 Interchanging
limits and derivatives

With a distribution, limits and (distributional)
derivatives can always be interchanged. This is
tremendously useful when talking about PDEs and
convergence of approximations. In the distribution
sense, the Fourier series can always be differentiated
term-by-term, for example.

This is easy to prove. Suppose that the distribu-
tions fn → f as n → ∞. That is, for any φ(x),
fn{φ} → f{φ}. Since this is true for any φ(x),
it must be true for −φ′(x), and hence fn

′ {φ} =
fn{−φ′} → f{−φ′} = f ′{φ} as n→∞. Q.E.D.

3 Rules for distributions
For the most part, in 18.303, we will cheat a bit.
We will treat things as ordinary functions when-
ever we can, using the ordinary operations, and only

switch to interpreting them as distributions when we
run into difficulty (e.g. derivatives of discontinuities,
etcetera). Since the rules for distribution operations
are all defined to be consistent with those for func-
tions in the case of regular distributions, this doesn’t
usually cause any trouble.

However, it is good to define some of the important
operations on distributions precisely. All you have to
do is to explain what the operation does to test func-
tions, usually defined by analogy with f(x)φ(x)dx
for regular distributions. Here are a few

´
of the most

basic operations:

• differentiation: f ′{φ} = f{−φ}

• addition: (f1 + f2){φ} = f1{φ}+ f2{φ}

• multiplication by smooth functions (including
constants) s(x): [s(x) · f ]{φ} = f{s(x)φ(x)}

• product rule for multiplication by smooth func-
tions s(x): [s·f ]′{φ} = [s·f ]{−φ′} = f{−sφ′} =
f{s′φ− (sφ)′} = f{s′φ}+ f ′{sφ} = [s′ · f ]{φ}+
[s · f ′]{φ} = [s′ · f + s · f ′]{φ}.

• translation: [f(x− y)]{φ(x)} = f{φ(x+ y)}

• scaling [f(αx)]{φ(x)} = 1

7Technically, we have to choose distributions with the right
set of test functions. The right test functions for the general
Fourier transform on the real line are those for which xnφ(x)→
0 as x→ ±∞ for any n > 0, i.e. φ(x) vanishes faster than any
polynomial. The resulting distributions are called tempered
distributions, and are the domain of the Fourier transform.

αf{φ(x/α)}

If you are not sure where these rules come from, just
try plugging them into a regular distribution f{φ} =´
f(x)φ(x)dx, and you’ll see that they work out in

the ordinary way.

4 Problems with distributions

Unfortunately, distributions are not a free lunch; they
come with their own headaches. There are two ma-
jor difficulties, one of which is surmountable and the
other is not:

• Boundary conditions: since distributions do not
have values at individual points, it is not so easy
to impose boundary conditions on the solutions
if they are viewed as distributions—what does it
mean to set u(0) = 0? There are ways around
this, but they are a bit cumbersome, especially
in more than one dimension.

• Multiplication: it is not generally meaningful
to multiply distributions. The simplest exam-
ple is the delta function: what would δ(x)2 be?
δ∆x(x)2 is okay, but its limit as ∆x → 0 does
not exist even as a distribution (the amplitude
goes as 1/∆x2 while the integral goes as ∆x, so
it diverges).
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For linear PDEs, lack of multiplication is not such
a big problem, but it does mean that we need to
be careful about Hilbert spaces: if we think of the
solutions u(x) as distributions, we have a problem
because 〈u, u〉 may not be defined—the set of distri-
butions does not form a Hilbert space. (Technically,
we can make something called a rigged Hilbert space
that includes distributions, but I don’t want to go
there.)

5 The weak form of a PDE

Suppose we have a linear PDE Auˆ = f . We want
to allow f to be a delta function etcetera, but we
still want to talk about boundary conditions, Hilbert
spaces, and so on for u. There is a relatively simple
compromise for linear PDEs, called the weak form
of the PDE or the weak solution. This concept
can roughly be described as requiring Auˆ = f only
in the “weak” sense of distributions (i.e., integrated
against test functions, taking distributional deriva-
tives in the case of a u with discontinuities), but re-
quiring u to be in a more restrictive class, e.g. regu-
lar distributions corresponding to functions satisfying
the boundary conditions in the ordinary sense but
having some continuity and differentiability so that
〈u, u〉 and 〈u,Auˆ 〉 are finite (i.e., living in an appropri-
ate Sobolev space). Even this definition gets rather
technical very quickly, especially if you want to allow
delta functions for f (in which case u can blow up at
the point of the delta for dimensions > 1). Nailing
down precisely what spaces of functions and opera-
tors one is dealing with is where a lot of technical
difficulty and obscurity arises in functional analysis.
However, for practical engineering and science appli-
cations, we can get away with being a little careless in
precisely how we define the function spaces because
the weird counterexamples are usually obviously un-
physical. The key insight of distributions is that what
we care about is weak equality, not pointwise equality,
and correspondingly we only need weak derivatives
(integration by parts, or technically “bilinear forms”).

6 Green’s functions

Now that we have distributions, Green’s functions are
much easier to work with. Consider, for example, the
Green’s function G(x, x′) of Â = −

2∂

is true if
AGˆ (x, x′) = δ(x− x′)

and the integrals are re-interpreted as evaluating a
distribution.

What does this equation mean? For any x 6= x′

[or for any φ(x) with φ(x′) = 0] we must have
AGˆ (x, x′) = 0 = −

2∂

x2 on [0, L∂ ] with
Dirichlet (zero) boundary conditions. If Auˆ = f is
to be solved by u(x) =

´
G(x, x′)f(x′)dx′, then we

must have Auˆ =
´

[AGˆ (x, x′)]f(x′)dx′ = f(x), which

∂x2G(x, x′), and this must mean
that G(x, x′) is a straight line for x < x′ and x > x′.
To satisfy, the boundary conditions, this straight line
must pass through zero at 0 and L, and henceG(x, x′)
must look like αx for x < x′ and β(x− L) for x > x′

for some constants α and β.
G(x, x′) had better be continuous at x = x′, or

otherwise we would get a delta function from the
first derivative—hence α = β(x′ − L)/x′. The first
derivative ∂

∂xG(x, x′) then gives α for x < x′ and β
for x > x′. What about the next derivative? Since
∂
∂xG(x, x′) is discontinuous, it doesn’t have an ordi-
nary second derivative at x = x′, but as a distribu-
tion it is no problem: ∂2

∂x2G(x, x′) is zero everywhere
(the derivative of a constant) plus a delta function
δ(x − x′) multiplied by β − α, the size of the jump.
Thus, − ∂2

∂x2G(x, x′) = ÂG = (α − β)δ(x − x′), and
from above we must have α− β = 1. Combined with
the equation for α from continuity of G, we obtain
β = −x′/L and α = 1 − x′/L, exactly the same as
our result from class (which we got by a more labo-
rious method).

Further reading
• I. M. Gel’fand and G. E. Shilov, Generalized
Functions, Volume I: Properties and Operations
(New York: Academic Press, 1964). [Out of
print, but still my favorite book on the subject.]

• Robert S. Strichartz, A Guide to Distribu-
tion Theory and Fourier Transforms (Singapore:
World Scientific, 1994).

• Jesper Lutzen, The Prehistory of the Theory of
Distributions (New York: Springer, 1982). [A
fascinating book describing the painful historical
process that led up to distribution theory.]
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Distributions in a nutshell
• Delta functions are okay. You can employ their

informal description without guilt because there
is a rigorous definition to fall back on in case of
doubt.

– An “integral” ∞
δ(x x−∞ − ′)φ(x)dx just

means φ(x′). In

´
tegrals over finite domains´

δ(x − x′)φ
Ω

(x) give φ(x′) if x′ is in the
interior of Ω and 0 if x′ is outside Ω, but
are undefined (or at least, more care is re-
quired) if x′ is on the boundary dΩ.

• When in doubt about how to compute f ′(x),
integrate by parts against a test function to
see what

´
f ′(x)φ(x) = −

´
f(x)φ′(x) does (the

“weak” or “distributional” derivative).

– A derivative of a discontinuity at x′ gives
δ(x−x′) multiplied by the size of the discon-
tinuity [the difference f(x′+)−f(x′−)], plus
the ordinary derivative everywhere else.

– This also applies to differentiating func-
tions like 1/

√
x that have finite integrals

but whose classical derivatives have diver-
gent integrals—applying the weak deriva-
tive instead produces a well-defined distri-
bution. [For example, this procedure fa-
mously yields ∇2 1 πr = −4 δ(~x) in 3d.]

• All that matters in the distribution (weak) sense
is the integral of a function times a smooth, lo-
calized test function φ(x). Anything that doesn’t
change such integrals f(x)φ(x), like finite val-
ues of f(x) at isolated

´
points, doesn’t matter.

(That is, whenever we use “=” for functions we
are almost always talking about weak equality.)

• Interchanging limits and derivatives is okay in
the distribution sense. Differentiating Fourier
series (and other expansions in infinite bases)
term-by-term is okay.

• In practice, we only ever need to solve PDEs in
the distribution sense (a “weak” solution): inte-
grating the left- and right-hand sides against any
test functions must give the same number, with
all derivatives taken in the weak sense.
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