Lecture 20

3 Example: Inhomogeneity in a small volume

Suppose we are solving $-\nabla \cdot(c \nabla u)=f$ in $\Omega=\mathbb{R}^{3}$ with a point source $f(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ at \mathbf{x}_{0}. Furthermore, suppose that $c(\mathbf{x})$ is piecewise-constant as in figure 1 , with $c(\mathbf{x})=c_{2}$ everywhere except in a volume V, centered at \mathbf{x}_{1}, where $\mathbf{c}(\mathbf{x})=c_{1}$. Now, suppose that we want the solution $u(\mathbf{x})$, but are far from V : both the source point \mathbf{x}_{0} and the desired point \mathbf{x} are far from V, with $\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right|$ and $\left|\mathbf{x}_{1}-\mathbf{x}\right|$ both much bigger than the diameter of V. This is shown schematically in figure 2 . In this case, we should expect the effect of the "scattered"

Figure 2: Schematic of problem with an inhomogeneity in a small volume V (centered at \mathbf{x}_{1}): we have a source at \mathbf{x}_{0} and want the solution at \mathbf{x}, with both \mathbf{x}_{0} and \mathbf{x} much farther from \mathbf{x}_{1} than the diameter of V.
solution from V to be small at \mathbf{x}, and a Born approximation should apply. Furthermore, we will assume $c_{1} \approx c_{2}$ (though not exactly equal!), so that we can neglect the effect of the discontinuity in ∇u mentioned after equation (3) above (which greatly complicates the application of any Born-like approximation in this problem because it would prevent us from using $u \approx u_{0}$ in $\left.V\right) \underline{3}$

In this case,

$$
u_{0}(\mathbf{x})=G_{0}\left(\mathbf{x}, \mathbf{x}_{0}\right) / c\left(\mathbf{x}_{0}\right)=\frac{1}{4 \pi c_{2}\left|\mathbf{x}-\mathbf{x}_{0}\right|}
$$

so in the Born approximation we write:

$$
u(\mathbf{x}) \approx u_{0}(\mathbf{x})+\hat{B} u_{0}
$$

where the scattered part of the solution, applying the SIE form (4) [valid when $c_{1} \approx c_{2}$], is

$$
\begin{aligned}
\hat{B} u_{0} & =\ln \left(c_{2} / c_{1}\right) \oiint_{d V} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \nabla^{\prime} u_{0}\left(\mathbf{x}^{\prime}\right) \cdot d \mathbf{A}^{\prime} \\
& =\ln \left(c_{2} / c_{1}\right) \iiint_{V} \nabla^{\prime} \cdot\left[G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \nabla^{\prime} u_{0}\left(\mathbf{x}^{\prime}\right)\right] d^{3} \mathbf{x}^{\prime} \\
& =\ln \left(c_{2} / c_{1}\right) \iiint_{V}\left[\nabla^{\prime} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cdot \nabla^{\prime} u_{0}\left(\mathbf{x}^{\prime}\right)+G_{0} \nabla^{\prime 2} u_{0}\right] d^{3} \mathbf{x}^{\prime}
\end{aligned}
$$

[^0]where in the second line we applied the divergence theorem, and in the third line the product rule led to a $\nabla^{2} u_{0}$ term, where $\nabla^{2} u_{0}=-\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ is zero in V (since \mathbf{x}_{0} is outside of V).

Now, since V is small compared to the distance from \mathbf{x} and \mathbf{x}_{0}, the distances $\left|\mathbf{x}^{\prime}-\mathbf{x}\right|$ and $\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|$ hardly change for any $\mathbf{x}^{\prime} \in V$, and so the $\nabla^{\prime} G_{0}$ and $\nabla^{\prime} u_{0}$ terms are approximately constant in this integral and we can just pull them out, giving the approximation:

$$
\left.\hat{B} u_{0} \approx \ln \left(c_{2} / c_{1}\right) \nabla^{\prime} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cdot \nabla^{\prime} u_{0}\left(\mathbf{x}^{\prime}\right)\right|_{\mathbf{x}^{\prime}=\mathbf{x}_{1}} \operatorname{volume}(V)
$$

We can compute these gradients explicitly:

$$
\nabla^{\prime} \frac{1}{\left|\mathbf{x}^{\prime}-\mathbf{y}\right|}=-\frac{\mathbf{x}^{\prime}-\mathbf{y}}{\left|\mathrm{x}^{\prime}-\mathbf{y}\right|^{3}}
$$

and hence:

$$
\begin{equation*}
u(\mathbf{x}) \approx \frac{1}{4 \pi c_{2}\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\ln \left(c_{2} / c_{1}\right) \frac{\left(\mathbf{x}_{1}-\mathbf{x}\right)}{4 \pi\left|\mathbf{x}_{1}-\mathbf{x}\right|^{3}} \cdot \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)}{4 \pi c_{2}\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right|^{3}} \text { volume }(V) \tag{5}
\end{equation*}
$$

Notice that the amplitude of the scattered term vanishes as volume $(V) \rightarrow 0$, as expected. Notice that it also depends on the sign of $\left(\mathbf{x}_{1}-\mathbf{x}\right) \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)$. Why is that? What does a $\nabla^{\prime} G_{0}$ source "mean," physically?

3.1 Dipole sources

Consider the following problem in $\Omega=\mathbb{R}^{3}$, requiring as usual that solutions vanish at ∞ :

$$
-\nabla^{2} D_{\mathbf{p}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-\mathbf{p} \cdot \nabla \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=+\mathbf{p} \cdot \nabla^{\prime} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

This is like the Green's function equation, except now we have put the derivative of a delta function on the right-hand side, with some constant vector \mathbf{p} (the "dipole moment"). Recall what the derivative of a delta function is:

$$
\left[-\mathbf{p} \cdot \nabla \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]\{\phi\}=\left[\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]\{\mathbf{p} \cdot \nabla \phi\}=\left.\mathbf{p} \cdot \nabla \phi\right|_{\mathbf{x}^{\prime}}=\lim _{\epsilon \rightarrow 0} \frac{\phi\left(\mathbf{x}^{\prime}+\epsilon \mathbf{p}\right)-\phi\left(\mathbf{x}^{\prime}-\epsilon \mathbf{p}\right)}{2 \epsilon}
$$

and hence (similar to pset 5 of 2010 or pset 7 of 2011),

$$
-\mathbf{p} \cdot \nabla \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\lim _{\epsilon \rightarrow 0} \frac{\delta\left(\mathbf{x}-\mathbf{x}^{\prime}-\epsilon \mathbf{p}\right)-\delta\left(\mathbf{x}-\mathbf{x}^{\prime}+\epsilon \mathbf{p}\right)}{2 \epsilon}
$$

That is, the derivative of a delta function is a limit of limit of two delta functions of opposite sign, displaced proportional to p. In 8.02, where delta functions are "point charges," this is what you would have called an "electric dipole."

We can solve for $\mathbf{D}_{\mathbf{p}}$ quite easily, because we know the solution G_{0} to $-\nabla^{2} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=$ $\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$, and ∇ and ∇^{\prime} derivatives can be interchanged in their order:

$$
-\mathbf{p} \cdot \nabla \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\mathbf{p} \cdot \nabla^{\prime}\left[\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]=\mathbf{p} \cdot \nabla^{\prime}\left[-\nabla^{2} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=-\nabla^{2}\left[\mathbf{p} \cdot \nabla^{\prime} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

and hence

$$
D_{\mathbf{p}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{p} \cdot \nabla^{\prime} G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{p} \cdot \frac{\mathbf{x}-\mathbf{x}^{\prime}}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}
$$

In electrostatics, ths would be the potential of a dipole. Note that this falls off as \sim $1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}$, whereas G_{0} falls off as $\sim 1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$.

Given this solution, we can now interpret the scattered part of the solution (5) above: a small inhomogeneity gives an effective dipole source \mathbf{p} at \mathbf{x}_{1}, where

$$
\mathbf{p}=-\ln \left(c_{2} / c_{1}\right) \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)}{4 \pi\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right|^{3}} \operatorname{volume}(V)
$$

In electrostatics, for a typical case where V is a small piece of matter in vacuum, $c_{2}<c_{1}$, so \mathbf{p} is parallel to $\mathbf{x}_{1}-\mathbf{x}_{0}$. Physically, a positive point charge induces a dipole moment \mathbf{p} pointed away from the charge, because a " + " charge at \mathbf{x}_{0} pushes " + " charges in V away from it, as shown below.

+
\mathbf{x}_{0}

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{3}$ It turns out that many people get this wrong in electromagnetism for cases when c_{1} and c_{2} are very different, as discussed in my paper on a closely related subject, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B 81, 238-293 (2005): http://math.mit.edu/ ~stevenj/papers/JohnsonPo05.pdf

