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1 Problem 1

Solve the tra¢ c �ow problem
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(a) At what time ts and position xs does a shock �rst form?

(b) Sketch the characteristics and indicate the region in the xt-plane in which the solution

is well-de�ned (i.e. does not break down).

(c) Sketch the density pro�le u = u (x; t) vs. x for several values of t in the interval

0 � t � ts.

2 Problem 2 : Water waves

The surface displacement for shallow water waves is governed by (in scaled coordinates),�
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Here, h = 0 is the mean free surface of the water. Consider the initial water wave pro�le
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(a) Find the parametric solution and characteristic curves.

(b) Show that two characteristics starting at s = s1 and s = s2 where s1; s2 2 (0; �)
intersect at time
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Thus the solution breaks down along the characteristics starting at s = �=2, when t = tc =

2= (3").

(c) Calculate @h=@x using implicitly di¤erentiation (the solution cannot be found explic-

itly) and hence show that along the characteristic starting at s = �=2,

lim
t!t�c
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Thus the wave slope becomes vertical.

(d) Sketch the wave pro�le u (x; tc), giving the x-values where the wave is vertical and

where the maximum displacement occurs.

3 Problem 3

Consider the quasi-linear PDE and initial condition

ut + uux +
1

2
u = 0; t > 0; �1 < x <1

u (x; 0) = " sin x; �1 < x <1

where " > 0 is constant.

(a) Find the parametric solution and characteristic curves.

(b) Give the solution u in implicit form by writing u in terms of x, t (but not r, s).

(c) For " = 1, show that the solution �rst breaks down at t = tc = 2 ln 2. Show that

along the characteristic through (x; t) = (�; 0), we have

lim
t!t�c

ux = �1:

(d) For " = 1, sketch the characteristics and the solution pro�le at time tc.

(e) Show that the solution exists for all time if 0 < " � 1=2.
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