# Problems for Quasi-Linear PDEs 

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

## 1 Problem 1

Solve the traffic flow problem

$$
\frac{\partial u}{\partial t}+(1-2 u) \frac{\partial u}{\partial x}=0, \quad u(x, 0)=f(x)
$$

for an initial traffic group

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{3}, & |x| \geq 1 \\
\frac{1}{2}\left(\frac{5}{3}-|x|\right), & |x| \leq 1
\end{array}\right.
$$

(a) At what time $t_{s}$ and position $x_{s}$ does a shock first form?
(b) Sketch the characteristics and indicate the region in the $x t$-plane in which the solution is well-defined (i.e. does not break down).
(c) Sketch the density profile $u=u(x, t)$ vs. $x$ for several values of $t$ in the interval $0 \leq t \leq t_{s}$.

## 2 Problem 2: Water waves

The surface displacement for shallow water waves is governed by (in scaled coordinates),

$$
\left(1+\frac{3}{2} h\right) \frac{\partial h}{\partial x}+\frac{\partial h}{\partial t}=0
$$

Here, $h=0$ is the mean free surface of the water. Consider the initial water wave profile

$$
h(x, 0)=\left\{\begin{array}{cl}
\varepsilon(1+\cos x), & |x| \leq \pi \\
0, & |x|>\pi
\end{array}\right.
$$

(a) Find the parametric solution and characteristic curves.
(b) Show that two characteristics starting at $s=s_{1}$ and $s=s_{2}$ where $s_{1}, s_{2} \in(0, \pi)$ intersect at time

$$
t_{i n t}=\frac{2}{3 \varepsilon}\left(-\frac{s_{1}-s_{2}}{\cos s_{1}-\cos s_{2}}\right)
$$

Show that

$$
t_{i n t} \geq \frac{2}{3 \varepsilon}, \quad \text { for all } s_{1}, s_{2} \in(0, \pi)
$$

and

$$
t_{i n t} \rightarrow \frac{2}{3 \varepsilon}, \quad \text { as } s_{1}, s_{2} \rightarrow \frac{\pi}{2}
$$

Thus the solution breaks down along the characteristics starting at $s=\pi / 2$, when $t=t_{c}=$ $2 /(3 \varepsilon)$.
(c) Calculate $\partial h / \partial x$ using implicitly differentiation (the solution cannot be found explicitly) and hence show that along the characteristic starting at $s=\pi / 2$,

$$
\lim _{t \rightarrow t_{c}^{-}} \frac{\partial h}{\partial x}=-\infty
$$

Thus the wave slope becomes vertical.
(d) Sketch the wave profile $u\left(x, t_{c}\right)$, giving the $x$-values where the wave is vertical and where the maximum displacement occurs.

## 3 Problem 3

Consider the quasi-linear PDE and initial condition

$$
\begin{aligned}
u_{t}+u u_{x}+\frac{1}{2} u & =0, \quad t>0, \quad-\infty<x<\infty \\
u(x, 0) & =\varepsilon \sin x, \quad-\infty<x<\infty
\end{aligned}
$$

where $\varepsilon>0$ is constant.
(a) Find the parametric solution and characteristic curves.
(b) Give the solution $u$ in implicit form by writing $u$ in terms of $x, t$ (but not $r, s$ ).
(c) For $\varepsilon=1$, show that the solution first breaks down at $t=t_{c}=2 \ln 2$. Show that along the characteristic through $(x, t)=(\pi, 0)$, we have

$$
\lim _{t \rightarrow t_{c}^{-}} u_{x}=-\infty
$$

(d) For $\varepsilon=1$, sketch the characteristics and the solution profile at time $t_{c}$.
(e) Show that the solution exists for all time if $0<\varepsilon \leq 1 / 2$.

