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We introduce another powerful method of solving PDEs. First, we need to consider 

some preliminary definitions and ideas. 

1 Preliminary ideas and motivation 

1.1 The delta function 

Ref: Guenther & Lee §10.5, Myint-U & Debnath §10.1 

Definition [Delta Function] The δ-function is defined by the following three 

properties, 
{ 

δ (x) = 
0, 

∞, 

x �= 0, 

x = 0, 
∫ 

∞ 

δ (x) dx = 1 
−∞ 

∫ 
∞ 

f (x) δ (x − a) dx = f (a) 
−∞ 

where f is continuous at x = a. The last is called the sifting property of the δ-function. 

To make proofs with the δ-function more rigorous, we consider a δ-sequence, that 

is, a sequence of functions that converge to the δ-function, at least in a pointwise 

sense. Consider the sequence 

δn (x) = 
n 

−(nx)2 √
π

e 

Note that 
∫ 

∞ 
∫ 

∞ 
∫ 

∞ 
2

−zδn (x) dx = √2n
π 

e −(nx)2 

dx = √2 

π 
e dz = erf (∞) = 1 

−∞ 0 0 
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∫ ∫ 

∫ ∫ ∫ 

∫ ∫ ∫ 

∫ ∫ ∫ 
( ) 

√ 

Definition [2D Delta Function] The 2D δ-function is defined by the following 

three properties, 

0, (x, y) = 0,
δ (x, y) = 

�
∞, (x, y) = 0, 

δ (x, y) dA = 1, 

f (x, y) δ (x − a, y − b) dA = f (a, b) . 

1.2 Green’s identities 

Ref: Guenther & Lee §8.3 

Recall that we derived the identity 

D 

(G∇ · F + F · ∇G) dA = 
C 

(GF) · n̂dS (1) 

for any scalar function G and vector valued function F. Setting F = ∇u gives what 

is called Green’s First Identity, 

dA = n̂) dS (2) 
D 

( 
G∇ 2 u + ∇u · ∇G 

) 

C 

G (∇u · 

Interchanging G and u and subtracting gives Green’s Second Identity, 

u∇ 2G − G∇ 2 u dA = (u∇G − G∇u) n̂dS. (3) · 
D C 

2 Solution of Laplace and Poisson equation 

Ref: Guenther & Lee, §5.3, §8.3, Myint-U & Debnath §10.2 – 10.4 

Consider the BVP 

2 ∇ u = F in D, (4) 

u = f on C. 

Let (x, y) be a fixed arbitrary point in a 2D domain D and let (ξ, η) be a variable 

point used for integration. Let r be the distance from (x, y) to (ξ, η), 

r = (ξ − x)2 + (η − y)2 . 

Considering the Green’s identities above motivates us to write 

∇ 2G = δ (ξ − x, η − y) = δ (r) in D, (5) 

G = 0 on C. 
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∫ ∫ ∫ 

∫ ∫ ∫ 

∫ ∫ ∫ ∫ 

∫ ∫ ∫ 

∫ ∫ ∫ ∣ 
∣ 
∣ 

The notation δ (r) is short for δ (ξ − x, η − y). Substituting (4) and (5) into Green’s 

second identity (3) gives 

u (x, y) − GFdA = f∇G n̂dS · 
D C 

Rearranging gives 

u (x, y) = GFdA + f∇G n̂dS (6) · 
D C 

Therefore, if we can find a G that satisfies (5), we can use (6) to find the solution 

u (x, y) of the BVP (4). The advantage is that finding the Green’s function G depends 

only on the area D and curve C, not on F and f . 

Note: this method can be generalized to 3D domains. 

2.1 Finding the Green’s function 

To find the Green’s function for a 2D domain D, we first find the simplest function 

that satisfies ∇2v = δ (r). Suppose that v (x, y) is axis-symmetric, that is, v = v (r). 

Then 
12 ∇ v = vrr + 
r
vr = δ (r) 

For r > 0, 
1 
vr = 0vrr + 

r 

Integrating gives 

v = A ln r + B 

For simplicity, we set B = 0. To find A, we integrate over a disc of radius ε centered 

at (x, y), Dε, 

1 = δ (r) dA = 2vdA ∇
Dε Dε 

From the Divergence Theorem, we have 

∇ 2vdA = ∇v · ndS 
Dε Cε 

where Cε is the boundary of Dε, i.e. a circle of circumference 2πε. Combining the 

previous two equations gives 

∂v ∣ A 
1 = ndS =∇v · 

∂r 
dS = 

ε
dS = 2πA 

Cε Cε r=ε Cε 

Hence 
1 

v (r) = ln r 
2π 
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√ 

√ √ 

This is called the fundamental solution for the Green’s function of the Laplacian on 

2D domains. For 3D domains, the fundamental solution for the Green’s function of 

the Laplacian is −1/(4πr), where r = (x − ξ)2 + (y − η)2 + (z − ζ)2 . 

The Green’s function for the Laplacian on 2D domains is defined in terms of the 

corresponding fundamental solution, 

1 
G (x, y; ξ, η) = ln r + h, 

2π 
h is regular, 

∇ 2h = 0, (ξ, η) ∈ D, 

G = 0 (ξ, η) ∈ C. 

The term “regular” means that h is twice continuously differentiable in (ξ, η) on D. 

Finding the Green’s function G is reduced to finding a C2 function h on D that 

satisfies 

∇ 2h = 0 (ξ, η) ∈ D, 
1 

h = −
2π 

ln r (ξ, η) ∈ C. 

The definition of G in terms of h gives the BVP (5) for G. Thus, for 2D regions D, 

finding the Green’s function for the Laplacian reduces to finding h. 

2.2 Examples 

Ref: Myint-U & Debnath §10.6 

(i) Full plane D = R2 . There are no boundaries so h = 0 will do, and 

1 1 [ 2 2] G = ln r = ln (ξ − x) + (η − y)
2π 4π 

(ii) Half plane D = {(x, y) : y > 0}. We find G by introducing what is called an 

“image point” (x,−y) corresponding to (x, y). Let r be the distance from (ξ, η) to 

(x, y) and r ′ the distance from (ξ, η) to the image point (x,−y), 

r = (ξ − x)2 + (η − y)2 , r ′ = (ξ − x)2 + (η + y)2 

We add 
1 

′ 
1 

√ 
2 2h = ln r = ln (ξ − x) + (η + y)−

2π 
−

2π 
to G to make G = 0 on the boundary. Since the image point (x,−y) is NOT in D, 

then h is regular for all points (ξ, η) ∈ D, and satisfies Laplace’s equation, 

∂2h ∂2h 
= = 0∇ 2h 

∂ξ2 
+ 

∂η2 
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Figure 1: Plot of the Green’s function G (x, y; ξ, η) for the Laplacian operator in the 

upper half plane, for (x, y) = (
√

2,
√

2). 

for (ξ, η) ∈ D. Writing things out fully, we have 

2 21 1 1 
′ 

1 r 1 (ξ − x) + (η − y)
G =

2π 
ln r + h =

2π 
ln r −

2π 
ln r =

2π 
ln 

r ′ 
=

4π 
ln 

(ξ − x)2 + (η + y)2 (7) 

G (x, y; ξ, η) is plotted in the upper half plane in Figure 1 for (x, y) = 
(√

2,
√

2 . 

Note that G → −∞ as (ξ, η) (x, y). Also, notice that G < 0 everywhere and → 
G = 0 on the boundary η = 0. These are, in fact, general properties of the Green’s 

function. The Green’s function G (x, y; ξ, η) acts like a weighting function for (x, y) 

and neighboring points in the plane. The solution u at (x, y) involves integrals of 

the weighting G (x, y; ξ, η) times the boundary condition f (ξ, η) and forcing function 

F (ξ, η). 

On the boundary C, η = 0, so that G = 0 and 

∂G ∣ 1 y 
n = =∇G · −

∂η ∣ η=0 π (ξ − x)2 + y2 

The solution of the BVP (6) with F = 0 on the upper half plane D can now be 

written as, from (6), 

∫ ∫ 
∞ y f (ξ) 

u (x, y) = 
C 

f∇G · n̂dS = 
π 

−∞ (ξ − x)2 + y
dξ, 

2 

which is the same as we found from the Fourier Transform, on page 13 of fourtran.pdf. 
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( ) ( ) 

∣ 
∣ ∣ 

∣ ∣ 

∣ 
∣ 
∣ 
∣ 
∣ 

( ) ( ) 

∫ 

√ 

√ √ 

(iii) Upper right quarter plane D = {(x, y) : x > 0, y > 0}. We use the image 

points (x,−y), (−x, y) and (−x,−y), 

1 
√ 

2 2 1 
√ 

2 2G = 
2π 

ln (ξ − x) + (η − y) −
2π 

ln (ξ − x) + (η + y) (8) 

1 
√ 

2 2 1 
√ 

2 2 −
2π 

ln (ξ + x) + (η − y) +
2π 

ln (ξ + x) + (η + y)

For (ξ, η) ∈ C = ∂D (the boundary), either ξ = 0 or η = 0, and in either case, G = 0. 

Thus G = 0 on the boundary of D. Also, the second, third and fourth terms on the 

r.h.s. are regular for (ξ, η) ∈ D, and hence the Laplacian ∇2 = ∂2/∂ξ2+∂2/∂η2 of each 

of these terms is zero. The Laplacian of the first term is δ (r). Hence ∇2G = δ (r). 

Thus (8) is the Green’s function in the upper half plane D. 

For (ξ, η) ∈ C = ∂D (the boundary), 

∫ ∫ 0 ∣
∫ 

∞ 
∣ 

∂G ∣ ∂G ∣ 
f∇G · n̂dS = f (0, η) − 

∂ξ 
∣ dη + f (ξ, 0) −

∂η ∣
∣ dξ 

C ∞ ξ=0 0 η=0 
∫ 

∞ 
∫ 

∞∂G ∣ ∂G ∣ 
= f (0, η) 

∂ξ 
∣ dη − f (ξ, 0) 

∂η 
∣ dξ 

0 ξ=0 0 η=0 

Note that 

∂G ∣ 4yxη 
( 2) ( 2) ∂ξ ξ=0 

= −
π x2 + (y + η) x2 + (y − η)

∂G ∣ 4yxξ 
∣ 2 2∂η η=0 

= −
π (x − ξ) + y2 (x + ξ) + y2 

The solution of the BVP (6) with F = 0 on the upper right quarter plane D and 

boundary condition u = f can now be written as, from (6), 

u (x, y) = f∇G n̂dS · 
C 

4yx 
∫ 

∞ ηf (0, η) 
= − 

π 0 
( 
x2 + (y + η)2) ( x2 + (y − η)2)dη 

4yx 
∫ 

∞ ξf (ξ, 0) 
+ ( ) ( )dξ 

π 0 (x − ξ)2 + y2 (x + ξ)2 + y2 

(iv) Unit disc D = {(x, y) : x2 + y2 ≤ 1}. By some simple geometry, for each 

point (x, y) ∈ D, choosing the image point (x ′ , y ′ ) along the same ray as (x, y) and a 

distance 1/ x2 + y2 away from the origin guarantees that r/r′ is constant along the 

circumference of the circle, where 

r = (ξ − x)2 + (η − y)2 , r ′ = (ξ − x ′ )2 + (η − y ′)2 . 
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( ) 

( ) 

( ) 

∣ 
( ) 

( ) 

( ) 

[DRAW] Using the law of cosines, we obtain 

r 2 = ρ̃2 + ρ2 − 2ρρ̃ cos θ̃ − θ 

1 ρ̃
r ′2 = ρ̃2 + 

ρ2 
− 2 cos θ̃ − θ 

ρ 

where ρ = 
√ 

x2 + y2, ρ̃ = 
√ 

ξ2 + η2 and θ, θ̃ are the angles the rays (x, y) and (ξ, η) 

make with the horizontal. Note that for (ξ, η) on the circumference (ξ2 +η2 = ρ̃2 = 1), 

we have 
( ) 

r2 1 + ρ2 − 2ρ cos θ̃ − θ 
= ( ) = ρ2 , ρ̃ = 1. 

r ′2 
1 + 

ρ
1 
2 − 2

ρ 
1 θ̃ − θcos 

Thus the Green’s function for the Laplacian on the 2D disc is 

1 r 1 ρ̃2 + ρ2 − 2ρρ̃ cos θ̃ − θ 
G (ξ, η; x, y) = ln ( ) 

2π r ′ρ 4π ρ2ρ̃2 + 1 − 2ρρ̃ cos θ̃ − θ 
ln = 

Note that 
∣


∂G ∣ 1 1 − ρ2


=∇G · n̂ = 
∂ρ̃ ∣ 

ρ̃=1 2π 1 + ρ2 − 2ρ cos θ̃ − θ 

Thus, the solution to the BVP (5) on the unit circle is (in polar coordinates), 

1 
∫ 2π 1 − ρ2 ( 

˜
) 

d˜u (ρ, θ) = ( )f θ θ 
2π 0 1 + ρ2 − 2ρ cos θ̃ − θ 

  

+ 
1 
∫ 2π ∫ 1 

ln  
ρ̃2 + ρ2 − 2ρρ̃ cos 

( 
θ̃ − θ 

)

 F 
( 
ρ,̃ θ̃
) 

ρd˜ ρdθ ˜
4π 0 0 ρ2ρ̃2 + 1 − 2ρρ̃ cos θ̃ − θ 

The solution to Laplace’s equation is found be setting F = 0, 

˜u (ρ, θ) = 
1 
∫ 2π 1 − ρ2 

( )f θ dθ̃
2π 0 1 + ρ2 − 2ρ cos θ̃ − θ 

This is called the Poisson integral formula for the unit disk. 

2.3 Conformal mapping and the Green’s function 

Conformal mapping allows us to extend the number of 2D regions for which Green’s 

functions of the Laplacian ∇2u can be found. We use complex notation, and let 

α = x + iy be a fixed point in D and let z = ξ + iη be a variable point in D (what 

we’re integrating over). If D is simply connected (a definition from complex analysis), 
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| |	 | | �

√ 

then by the Riemann Mapping Theorem, there is a conformal map w (z) (analytic 

and one-to-one) from D into the unit disk, which maps α to the origin, w (α) = 0 

and the boundary of D to the unit circle, |w (z)| = 1 for z ∈ ∂D and 0 ≤ |w (z)| < 1 

for z ∈ D/∂D. The Greens function G is then given by 

1 
G = 

2π 
ln |w (z)| 

To see this, we need a few results from complex analysis. First, note that for z ∈ ∂D, 

w (z) = 0 so that G = 0. Also, since w (z) is 1-1, w (z) > 0 for z = α. Thus, we 

can write w (z) = (z − α)n H (z) where H (z) is analytic and nonzero in D. Since 

w (z) is 1-1, w ′ (z) > 0 on D. Thus n = 1. Hence | |

w (z) = (z − α) H (z) 

and 
1 

G = ln r + h 
2π 

where 

r = |z − α| = (ξ − x)2 + (η − y)2 

1 
h = 

2π 
ln |H (z)| 

Since H (z) is analytic and nonzero in D, then (1/2π) ln H (z) is analytic in D and 

hence its real part is harmonic, i.e. h = ℜ ((1/2π) ln H (z)) satisfies ∇2h = 0 in D. 

Thus by our definition above, G is the Green’s function of the Laplacian on D. 

Example 1. The half plane D = {(x, y) : y > 0}. The analytic function 

w (z) =	
z − α 

z − α∗ 

maps the upper half plane D onto the unit disc, where asterisks denote the complex 

conjugate. Note that w (α) = 0 and along the boundary of D, z = x, which is 

equidistant from α and α∗, so that w (z) = 1. Points in the upper half plane (y > 0) | |
are closer to α = x + iy, also in the upper half plane, than to α∗ = x − iy, in the 

lower half plane. Thus for z ∈ D/∂D, |w (z)| = |z − α| / |z − α∗ | < 1. The Green’s 

function is 
1 1	 1 r 

G = 
2π 

ln |w (z)| =
2π 

ln |
|
z

z 

−
−

α

α
∗

|
| = 2π 

ln 
r ′ 

which is the same as we derived before, Eq. (7).
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3 Solution to other equations by Green’s function 

Ref: Myint-U & Debnath §10.5 

The method of Green’s functions can be used to solve other equations, in 2D and 

3D. For instance, for a 2D region D, the problem 

2 ∇ u +	 u = F in D, 

u = f on ∂D, 

has the fundamental solution 
1 
Y0 (r)

4 

where Y0 (r) is the Bessel function of order zero of the second kind. The problem 

∇ 2 u − u = F in D, 

u = f on ∂D, 

has fundamental solution 
1 −
2π

K0 (r) 

where K0 (r) is the modified Bessel function of order zero of the second kind. 

The Green’s function method can also be used to solve time-dependent problems, 

such as the Wave Equation and the Heat Equation. 
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