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1 Problem 1

A rectangular metal plate with sides of lengths L, H and insulated faces is heated

to a uniform temperature of u0 degrees Celsius and allowed to cool with its edges

maintained at 0o C. You may use dimensional coordinates, with PDE

ut = κ∇2u, 0 ≤ x ≤ L, 0 ≤ y ≤ H.

(i) Find the smallest eigen-value λ. For large time t, the temperature is given

approximately by the term with e−λκt. Show that this term is

u (x, y, t) = A exp

(
−π2

(
1

L2
+

1

H2

)
κt

)
sin

(πx

L

)
sin

(πy

H

)
.

Find the value of A. For fixed t = t0 � 0, sketch the level curves u = constant in the

xy-plane.

Solution: We use the method of separation of variables,

u (x, y, t) = v (x, y)T (t)

The PDE becomes
T ′

κT
=

∇2v

v

Since the left hand side depends on time t only, and the right hand side depends only

on (x, y), both must be equal to a constant,

T ′

κT
=

∇2v

v
= −λ
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The boundary conditions on u (x, y, t) imply that v (x, y) = 0 on the boundary.

Given λ, the solution for T (t) is

T (t) = ce−λκt

for some constant c. The problem for v (x, y) is the Sturm-Liouville problem on the

rectangle,

∇2v + λv = 0; v = 0 on boundary

We solve for v (x, y) as in class, by separation of variables. The eigen-solutions are

vmn (x, y) = sin
(mπx

L

)
sin

(nπy

H

)
, λmn = π2

(
m2

L2
+

n2

H2

)
.

The corresponding solution umn (x, y, t) is

umn (x, y, t) = Amnvmn (x, y)Tmn (t) = Amn sin
(mπx

L

)
sin

(nπy

H

)
e−κλmnt

To satisfy the initial condition, we sum all the individual solutions (of the PDE and

BCs),

u (x, y, t) =
∞∑

m=1

∞∑
n=1

umn (x, y, t)

Imposing the IC gives

u0 = u (x, y, 0) =

∞∑
m=1

∞∑
n=1

umn (x, y, 0) =

∞∑
m=1

∞∑
n=1

Amnvmn (x, y)

=
∞∑

m=1

∞∑
n=1

Amn sin
(mπx

L

)
sin

(nπy

H

)

Multiplying both sides by vlk (x, y) and integrating over the rectangle gives

u0

∫ L

0

∫ H

0

sin

(
lπx

L

)
sin

(
kπy

H

)
dydx

=
∞∑

m=1

∞∑
n=1

Amn

∫ L

0

∫ H

0

sin

(
lπx

L

)
sin

(
kπy

H

)
sin

(mπx

L

)
sin

(nπy

H

)
dydx

=

∞∑
m=1

∞∑
n=1

Amn

∫ L

0

sin

(
lπx

L

)
sin

(mπx

L

)
dx

∫ H

0

sin

(
kπy

H

)
sin

(nπy

H

)
dy

Using our well known orthogonality relations gives

u0

∫ L

0

∫ H

0

sin

(
lπx

L

)
sin

(
kπy

H

)
dydx = Alk

LH

4
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Thus, replacing l with m and k with n (it’s ok, these are just dummy indices), we

have

Anm =
4u0

LH

∫ L

0

sin
(mπx

L

)
dx

∫ H

0

sin
(nπy

H

)
dy

=
4u0

LH

cos (mπ) − 1

mπ/L

cos (nπ) − 1

nπ/H

=
4u0

π2mn
((−1)m − 1) ((−1)n − 1)

Thus A2m,2n = 0 and

A2n−1,2m−1 =
16u0

π2 (2m − 1) (2n − 1)

Finally, the full solution is

u (x, y, t) =
16u0

π2

∞∑
m=1

∞∑
n=1

exp (−κλ2m−1,2n−1t)

(2m − 1) (2n − 1)
sin

(
(2m − 1)πx

L

)
sin

(
(2n − 1)πy

H

)

The smallest eigenvalue is

λ11 = π2

(
1

L2
+

1

H2

)

Note that for m > 1, n > 1,

∣∣∣∣umn (x, y, t)

u11 (x, y, t)

∣∣∣∣ ≤
∣∣∣∣Amn

A11

∣∣∣∣
∣∣∣∣∣sin

(
mπx

L

)
sin

(
nπy
H

)
sin

(
πx
L

)
sin

(
πy
H

)
∣∣∣∣∣
∣∣∣∣e−κλmnt

e−κλ11t

∣∣∣∣
≤ 1

(2m − 1) (2n − 1)

∣∣∣∣∣mn sin
(

πx
L

)
sin

(
πy
H

)
sin

(
πx
L

)
sin

(
πy
H

)
∣∣∣∣∣ e−κ(λmn−λ11)t

≤ mn

(2m − 1) (2n − 1)
e−κ(λmn−λ11)t

≤ e−κ(λmn−λ11)t

Since the next terms in the series are u31 and u13, then∣∣∣∣u13 (x, y, t)

u11 (x, y, t)

∣∣∣∣ ≤ e−κ(λ13−λ11)t = exp

(
−8κπ2

H2
t

)
∣∣∣∣u31 (x, y, t)

u11 (x, y, t)

∣∣∣∣ ≤ e−κ(λ31−λ11)t = exp

(
−8κπ2

L2
t

)

Hence for κt > max {L, H} /π2, we have∣∣∣∣u13 (x, y, t)

u11 (x, y, t)

∣∣∣∣ ,
∣∣∣∣u31 (x, y, t)

u11 (x, y, t)

∣∣∣∣ ≤ exp (−8) < 3.4 × 10−4
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Figure 1: Level curves of sin
(

πx
L

)
sin

(
πy
H

)
.

Thus, after a short time the other terms in the series become small relative to the

first term, and

u (x, y, t) ≈ u11 (x, y, t) =
16u0

π2
exp

(
−π2

(
1

L2
+

1

H2

)
κt

)
sin

(πx

L

)
sin

(πy

H

)

Thus A = 16u0/π
2.

To sketch the level curves, note that the rectangular plate is symmetric about

x = L/2 and y = H/2. Thus these are heat flow lines at which the level curves

meet at right angles. Also, for large time, the level curves are very close to those

of the first term approximation, u11 (x, y, t), which are effectively the level curves of

sin
(

πx
L

)
sin

(
πy
H

)
(see Figure 1). The function sin

(
πx
L

)
sin

(
πy
H

)
has a maximum of 1

and is symmetric about the curves x = L/2 and y = H/2.

(ii) Of all rectangular plates of equal area, which will cool the slowest? Hint: for

each type of plate, the smallest eigenvalue gives the rate of cooling.

Solution: For each plate, the smallest eigenvalue gives the rate of cooling,

λ11 = π2

(
1

L2
+

1

H2

)

For plates of equal area A0 = LH , the smallest eigenvalue can be written

λ11 = π2

(
1

L2
+

L2

A2
0

)
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We think of λ11 as a function of L. To find the smallest eigenvalue, we minimize λ11

with respect to the side length L:

dλ11

dL
= π2

(
− 2

L3
+

2L

A2
0

)

Setting dλ11/dL = 0 gives L =
√

A0. Since dλ11/dL < 0 for 0 < L <
√

A0 and

dλ11/dL > 0 for L >
√

A0, then L =
√

A0 is a local minimum. Thus H = A0/L =√
A0 = L and the shape with the smallest eigenvalue and smallest rate of cooling is

a square.

(iii) Will a square plate, side length L, cool more or less rapidly than a rod of

length L, with insulated sides, and with ends maintained at 0o C? You may use the

results we derived in class for the rod, without derivation.

Solution: Recall that for the rod of length 1 whose ends were kept at 0 degrees

and whose sides were insulated, the smallest eigenvalue is

λrod = π2

In dimensional form,

λ′
rod =

λrod

L2
=

π2

L2
.

The smallest eigenvalue for the square plate of side length L is

λ′
11 =

π2

L2
(1 + 1) =

2π2

L2
= 2λ′

rod

Thus, the square plate cools faster than the rod (at twice the rate). The physical

reason is that the plate can cool from all sides, wereas the rod can only cool from its

ends.
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2 Problem 2

A rectangular metal plate with sides of lengths L, H and insulated faces has two

parallel sides maintained at 0o C, one side at 100o C, and one side insulated.

(i) Find the equilibrium (steady-state) temperature uE (x, y) of the plate.

Solution: Let the origin be at the corner between one of the sides kept at 0 and

the other kept at 100 side. The steady-state temperature satisfies Laplace’s equation

on the plate,

∇2uE = 0

with boundary conditions

uE (x, 0) = uE (x, L) = 0, {0 ≤ x ≤ L} ,

uE (0, y) = 100, uEx (L, y) = 0, {0 ≤ y ≤ H} .

The condition uEx (L, y) = 0 indicates that the side x = L of the plate is insulated,

i.e., the heat flux normal to the side is zero, −K0∇u · n = 0. Thus the heat moves

along the side, not across it. Separating variables, we have

uE (x, y) = X (x) Y (y) .

The PDE implies
X ′′

X
= −Y ′′

Y

and since the l.h.s. depends only on x and the r.h.s. depends only on y, both must

equal a constant,
X ′′

X
= −Y ′′

Y
= λ. (1)

The BCs imply

0 = uE (x, 0) = X (x) Y (0)

0 = uE (x, H) = X (x) Y (H) (2)

0 =
∂uE

∂x
(L, y) = X ′ (L) Y (y)

For non-trivial solutions, X (x) and Y (y) cannot be identically zero. Thus, to satisfy

the BCs,

Y (0) = Y (H) = X ′ (L) = 0.

The problem for Y (y) is

Y ′′ (y) + λY (y) = 0; Y (0) = Y (H) = 0.
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This is simply the 1D Sturm-Liouville problem, with eigen-solutions (you know this

by heart),

Yn (y) = sin
(nπy

H

)
, λ = λn =

(nπ

H

)2

, n = 1, 2, 3, ... (3)

Therefore, the constant λ in Eq. (1) must be positive and take the values λ = λn,

n = 1, 2, 3, ....

The problem for X (x) is, from (1),

X ′′ − λX = 0; X ′ (L) = 0.

Since λ = λn > 0, X (x) is the sum of exponentials,

X (x) = c1e
√

λx + c2e
−√

λx

= c3 sinh
(√

λ (L − x)
)

+ c4 cosh
(√

λ (L − x)
)

We have written the solution in a more convenient form, since sinh (x) = (ex − e−x) /2,

cosh (x) = (ex + e−x) /2. Imposing the BC X ′ (L) = 0 gives c3 = 0. Thus for each n,

we have a solution

Xn (x) = an cosh
(√

λn (L − x)
)

(4)

Combining (3) and (4) gives a solution un (x, y) to Laplace’s equation and the three

BCs in (2),

un (x, y) = Xn (x) Yn (y) = An cosh
(nπ

H
(L − x)

)
sin

(nπy

H

)
(5)

To satisfy the BC along the side with u = 100, we must sum over all n. The

general solution is

uE (x, y) =

∞∑
n=1

un (x, y) =

∞∑
n=1

An cosh
(nπ

H
(L − x)

)
sin

(nπy

H

)

where the constants An are determined by imposing that u = 100 along the side

{x = 0, 0 ≤ y ≤ H},

100 =
∞∑

n=1

An cosh

(
nπL

H

)
sin

(nπy

H

)

Multiplying by sin (mπy/H), integrating from y = 0 to y = H , and using orthogo-

nality gives

100

∫ H

0

sin
(mπy

H

)
dy =

∞∑
n=1

An cosh

(
nπL

H

) ∫ H

0

sin
(mπy

H

)
sin

(nπy

H

)
dy

= Am cosh

(
mπL

H

)
H

2

7



Therefore,

Am cosh

(
mπL

H

)
=

200

H

∫ H

0

sin
(mπy

H

)
dy =

200

H

1 − cos (mπ)

mπ/H
= 200

1 − (−1)m

mπ

Thus A2n = 0 and

A2n−1 =
400

π (2n − 1) cosh ((2n − 1) πL/H)

The complete steady-state solution is therefore

uE (x, y) =

∞∑
n=1

A2n−1 cosh

(
(2n − 1)π (L − x)

H

)
sin

(
(2n − 1) πy

H

)

=
400

π

∞∑
n=1

1

2n − 1

cosh ((2n − 1) π (L − x) /H)

cosh ((2n − 1)πL/H)
sin

(
(2n − 1)πy

H

)
(6)

(ii) If H = 2L, approximate the temperature at

(a) the hottest point on the insulated edge, and

(b) at the center of the plate (use first-term approx).

Find an upper bound for the error in (a) and (b) by getting an upper bound on

the ratio of the second to the first term on the insulated edge.

Bonus: use a symmetry argument to find the exact answer for (a).

Solution: With H = 2L, uE (x, y) in (i) is symmetric about y = L, which

implies that uEy (x, L) = 0. The hottest point on the insulated edge is, physically,

that farthest away from the size at 0, i.e. at (x, y) = (L, L). From (6),

uE (L, L) =
400

π

∞∑
n=1

(−1)n+1

(2n − 1) cosh ((2n − 1) π/2)

This is an alternating series, whose truncation error is bounded by the magnitude of

the first omitted term,

uE (L, L) ≈ 400

π cosh (π/2)
≈ 50. 74o, |error| <

400

3π cosh (3π/2)
≈ 0.76o

At the center of the plate, (x, y) = (L/2, L), (6) gives

uE

(
L

2
, L

)
=

400

π

∞∑
n=1

(−1)n+1

2n − 1

cosh ((2n − 1) π/4)

cosh ((2n − 1) π/2)

The first term approximation is

uE (L, L) ≈ 400 cosh (π/4)

π cosh (π/2)
≈ 67.22o, |error| <

400 cosh (3π/4)

3π cosh (3π/2)
≈ 4.06o
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Figure 2: Illustration of symmetry argument for question 2(ii).

A two-term approximation would give

uE (L, L) ≈ 400

π

[
cosh (π/4)

cosh (π/2)
− cosh (3π/4)

3 cosh (3π/2)

]
≈ 63. 16o,

|error| <
400 cosh (5π/4)

5π cosh (5π/2)
≈ 0.50o.

The temperature of the hottest point on the insulated side x = L can be found

by symmetry. Since uEy = 0 along y = L (no heat flows across this line, only parallel

to it) and since uE is symmetric about y = L, we need only consider the upper half

of the plate. Consider the heat problems on the three plates considered in Figure

2. Plate 2 is found by rotating plate 1 about the dash-dotted diagonal. Thus, the

temperature at a given point on this diagonal is the same on both plates 1 and 2.

By linearity, superposing the solutions of 1 and 2 gives solution 3. Clearly, solution

3 is uE3 (x, y) = 100o everywhere, since the sides are either insulated or maintained

at 100 degrees. Thus, the temperature along the diagonals in both plates 1 and 2 is

100/2 = 50o. Also, since there are no sources or sinks in the upper triangular region

of plate 1 bounded by the diagonal, the insulated side x = L and the top side at 0,

the temperature must decrease along the side x = L from y = L to y = 2L. Hence

the hottest point on the insulated side x = L is at (x, y) = (L, L), and since this is a

point on the diagonal,

uE (L, L) = 50o.

(iii) Sketch typical isothermal curves and heat flow lines (the orthogonal trajec-

tories). Where is the temperature gradient ∇u equal to zero?

Solution: Since uEx = 0 along y = L and uEy = 0 along x = L, then ∇u = 0

at (x, y) = (L, L). To aid you in drawing the isothermal curves and heat flow lines,

think about drawing these lines on a square of side length 2L, whose horizontal sides

are kept at 0o and vertical sides kept at 100o. On this square, the lines x = L and
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Figure 3: Level curves (solid) and heat flow lines (dashed) of uE(x, y) on (a) a square

of side length 2L and (b) on the rectangle of problem (iii).

y = L are lines of symmetry. Thus x = L and y = L are heat flow lines, i.e. these act

as insulating boundaries. Thus our original rectangular plate is simply the left side

of the 2L square. We have shown in (ii) that the diagonals are at 50o. It is easiest to

first draw the isothermal curves and then the heat flow lines in the upper left triangle

(see Figure 3(a)). Then the desired isothermal curves on the rectangle follow (Figure

3(b)).

(iv) Consider a square plate of side length L, with one side at 100o C, an adjacent

edge at 0o C, and the other two edges insulated. Find the steady-state temperature at

points A (center of the edge opposite the side at 0o) and B (corner joining insulated

sides) without doing any more calculation, i.e., use your solution to (ii) and symmetry.

Hint: lines of symmetry in the original plate (with H = 2L) are heat flow lines, and

can effectively divide the square into smaller parts, where the lines of symmetry are

insulating boundaries.

Solution: The desired plate is simply the upper half of the plate considered in

parts (i) – (iii) (with H = 2L), since we argued that the line y = L is a line of

symmetry in our rectangle with H = 2L. Thus, the temperature at the desired

points is merely the temperatures found in part (ii). At point A, the temperature is

uE (L/2, L) ≈ 63. 16o and at point B, the temperature is uE (L, L) = 50o.
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3 Problem 3

Consider the eigenvalue problem for the Laplacian

∇2v + λv = 0 in D,

v = 0 on ∂D,

where D = {(x, y, z) : x2 + y2 + z2 ≤ 1} ⊂ R
3 is a sphere of radius 1.

(i) If v is a pure radial function, v = R (r), show that the eigenvalue problem

reduces to
d2

dr2
(rR) + λrR = 0,

R (1) = 0, R (0) bounded

Show that the radial eigen-functions and eigenvalues are

Rn (r) = g (nπr) , n = 1, 2, 3, ...

where

g (x) =

{
sinx

x
, x > 0

1, x = 0

Sketch the graphs of the first two eigen-functions.

You may use the fact that for v = R (r), the Laplacian is

∇2R (r) =
1

r2

d

dr

(
r2dR

dr

)

Solution: With v = R (r), the Sturm-Liouville problem becomes

1

r2

d

dr

(
r2dR

dr

)
+ λR = 0, in 0 < r < 1, (7)

R = 0, on r = 1.

Multiplying (7) by r and rearranging gives

d2

dr2
(rR) + λrR = 0

Let S (r) = rR (r). Then

d2S

dr2
+ λS = 0; S (0) = 0, S (1) = 0.

The first BC follows since R (0) is bounded. If λ < 0, then

S = c1e
−
√

|λ|r + c2e
√

|λ|r

11



and imposing the BCs S = 0 on r = 0, 1 gives c1 = c2 = 0. Thus λ < 0 gives a

trivial solution. For λ = 0, S = ar + b, and imposing the BCs again gives the trivial

solution. Lastly, assuming λ > 0, we have

S = c3 sin
(√

λr
)

+ c4 cos
(√

λr
)

Imposing the BC S (0) = 0 gives c4 = 0, and S (1) = 0 implies sin
(√

λ
)

= 0, or

λ = n2π2 for some positive integer n. Thus

Sn (r) = cn sin (nπr)

and

Rn (r) =
Sn (r)

r
=

sin (nπr)

nπr

where we have chosen cn = 1/nπ. Note that the eigenfunctions are only unique up

to a multiplicative constant, and when we go to form the solution to the heat or

wave problem we will always multiply the n’th eigenfunction by a constant An. In

other words, we are free to choose the constant cn to simplify the form of the n’th

eigenfunction. Lastly, note that L’Hopital’s rule implies that

lim
r→0

Rn (r) = lim
r→0

sin (nπr)

nπr
= 1

Thus we continuously extend the function Rn (r) to 1 at r = 1. Hence

Rn (r) = g (nπr)

as required. The first two eigenfunctions R1 (r) and R2 (r) are plotted in Figure 4.

(ii) A solid sphere of dimensionless radius 1 is heated uniformly to a temperature of

u0 degrees Celsius, placed in ice at 0o, and allowed to cool. Show that the temperature

at the center for t > 0 is given by

u (0, t) = 2u0

∞∑
n=1

(−1)n−1 exp
(−n2π2t

)

Hint: use the dimensionless heat equation ut = ∇2u. What are the BCs? What is

the IC?

Compare the central temperature with the temperature at the center of a rod of

scaled length 2, and the same initial temperature. You may use the results we derived

in class - you’ll need to rescale the spatial coordinate x via x̂ = 2x to make the scaled

rod length 2, rather than 1.
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Figure 4: The eigen-functions R1(r) and R2(r).

Solution: By symmetry, the temperature distribution in the sphere is given by

u (r, t) = R (r)T (t). The heat equation ut = uxx becomes

T ′

T
=

∇2R (r)

R

Since the left hand side depends only on t, and the right hand side on r, both sides

must equal a constant, −λ,
T ′

T
=

∇2R (r)

R
= −λ

We have shown above that

R = Rn (r) , λ = λn = (nπ)2

Thus the full solution is

u (r, t) =
∞∑

n=1

AnRn (r) exp
(−n2π2t

)
=

∞∑
n=1

Ang (nπr) exp
(−n2π2t

)
To find the An’s, we impose the IC,

u0 = u (r, 0) =
∞∑

n=1

Ang (nπr) =
∞∑

n=1

An
sin (nπr)

nπr

Multiplying by r sin (mπr) and integrating from r = 0 to r = 1 gives

u0

∫ 1

0

r sin (mπr) dr =
∞∑

n=1

An

nπ

∫ 1

0

sin (nπr) sin (mπr) dr =
Am

2mπ
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The second equality was obtained by orthogonality. Rearranging gives

Am = 2mπu0

∫ 1

0

r sin (mπr) dr

=
2mπu0

(mπ)2 [sin (mπr) − mπr cos (mπr)]10

= 2u0 (−1)m−1

Thus

u (r, t) = 2u0

∞∑
n=1

(−1)m−1 g (nπr) exp
(−n2π2t

)
Since g (0) = 1, the center temperature is

u (0, t) = 2u0

∞∑
n=1

(−1)m−1 exp
(−n2π2t

)

as required.

The temperature of a rod of length L, whose ends are kept at 0o and whose initial

temperature is u0 is, in dimensional form,

u′
rod (x′, t′) =

4u0

π

∞∑
n=1

sin ((2n − 1) πx′/L)

(2n − 1)
exp

(
− (2n − 1)2 π2κt′

L

)

For a rod of length L = 2, with κt′ = t and x = x′, we have

urod (x, t) =
4u0

π

∞∑
n=1

sin ((2n − 1) πx/2)

(2n − 1)
exp

(
− (2n − 1)2 π2t

2

)

The central temperature (x = 1) is

urod (1, t) =
4u0

π

∞∑
n=1

sin ((2n − 1)π/2)

(2n − 1)
exp

(
− (2n − 1)2 π2t

2

)

=
4u0

π

∞∑
n=1

(−1)n−1

2n − 1
exp

(
− (2n − 1)2 π2t

2

)

After t > 1/π2, the cooling of both the rod and sphere is limited by the first term

approximation,

urod (1, t) ≈ 4u0

π
exp

(
−π2t

2

)
, usphere (r, t) ≈ 2u0 exp

(−π2t
)
.

Thus the rod cools at half the rate of the sphere.
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4 Problem 4

Find the eigenvalue λ and corresponding eigen-function v for the isosceles right tri-

angle; v and λ satisfy

∇2v + λv = 0 in D,

v = 0 on ∂D,

where D = {(x, y) : 0 < y < x, 0 < x < 1}.
Hint: combine the eigen-functions on the square

Dsq = {(x, y) : 0 < x < 1, 0 < y < 1}

to obtain an eigen-function on D that is positive on D. We know that the first

eigen-function can be characterized (up to a non-zero multiplicative constant) as the

eigen-function that is of one sign.

Solution: Let’s try a linear combination of the two functions v21 (x, y) and

v12 (x, y),

vT = c1v12 + c2v21

where

vmn (x, y) = sin (mπx) sin (nπy) .

Note that since λ12 = λ21, both satisfy the Sturm-Liouville problem

∇2v + λ12v = 0 in Dsq; v = 0 on ∂Dsq. (8)

Thus, by linearity, vT also satisfies (8). We have

vT (x, y) = c1 sin (πx) sin (2πy) + c2 sin (2πx) sin (πy)

= c1 sin (πx) 2 sin (πy) cos (πy) + c22 sin (πx) cos (πx) sin (πy)

= 2 sin (πx) sin (πy) (c1 cos (πy) + c2 cos (πx)) (9)

For any c1, c2, vT (x, y) = 0 along the horizontal and vertical sides, x = 0, 1 and

y = 0, 1. This must happen since each vmn is zero on the boundary of the square.

For vT to vanish along the diagonal of the triangle, we must also have vT (x, x) = 0,

so that (9)

0 = vT (x, x) = 2 (c1 + c2) sin2 (πx) cos (πx)

Hence, c2 = −c1. Substituting this into (9) gives

vT (x, y) = 2c1 sin (πx) sin (πy) (cos (πy) − cos (πx))
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Thus vT = 0 on the boundary ∂D of the triangle, and since it satisfies (8) on the

square, then vT is an eigenfunction of the Sturm-Liouville problem on the triangle,

∇2v + λ12v = 0 in D; v = 0 on ∂D. (10)

However, we need vT > 0 in D. This amounts to setting the sign of c1. Note that on

D, 0 < y < x < 1, and hence

cos (πy) > cos (πx) .

Hence we take c1 = 1 (recall we only need to find vT up to positive multiplicative

constant) so that

vT = v21 − v12 = 2 sin (πx) sin (πy) (cos (πy) − cos (πx))

satisfies the Sturm-Liouville problem (10) on the triangle and is positive on the in-

terior of the triangle. We asserted in class that the eigenvalue associated with an

eigenfunction of these properties is in fact the smallest eigenvalue,

λ21 = λ12 = 5π2

on the triangle D = {(x, y) : 0 < y < x, 0 < x < 1}.

5 Problem 5

Consider the boundary value problem

∇2v = 0, 0 < x < 1, 0 < y < 1 (11)

v (0, y) = 0, v (1, y) = 100, 0 < y < 1

v (x, 0) = 100, v (x, 1) = 0, 0 < x < 1.

Give a symmetry argument to show that v (x, x) = 50 for 0 < x < 1. Sketch the level

curves of v.

Solution: The symmetry argument is illustrated in Figure 5. Problem 1 repre-

sents the boundary value problem (11). Problem 2 is simply problem 1 rotated by π

(180 degrees). Let v1, v2, v3 be the solutions to Laplace’s equation with BCs illustrated

in problems 1, 2, 3 in Figure 5. Then by symmetry (see Figure 5), v1 (x, x) = v2 (x, x).

Problem 3 is the superposition of Problems 1 and 2, thus

v3 (x, x) = v1 (x, x) + v2 (x, x) = 2v1 (x, x) (12)

Clearly, though, the solution to Problem 3 is v3 = 100. Thus by (12), v1 (x, x) = 50.

The isotherms (level curves) are shown in Figure 6.
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Problem 2

100

0

u1
0

100

u1

0

2u1=100

100

+ =0 100 100

100

100 100

Problem 1 Problem 3

Figure 5: Illustration of symmetry argument for question 5.

0

50

0<u<50

1000

50<u<100
100

Figure 6: Isotherms (level curves of temperature) for square in question 5.
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