Solutions for Problem Set 2: Variations of the Basic Heat Problem

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 2

Consider the non-homogeneous heat problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + b; \qquad u(0,t) = 0 = u(1,t); \qquad u(x,0) = 0$$
 (1)

where t > 0, 0 < x < 1 and b is constant.

a. Find the equilibrium solution $u_E(x)$.

Solution: The equilibrium solution $u_{E}\left(x\right)$ satisfies the PDE (1) and BCs,

$$0 = u_E'' + b;$$
 $u_E(0) = 0 = u_E(1).$

The solution is

$$u_E(x) = \frac{b}{2}x(1-x)$$

b. Transform the heat problem (1) into a standard homogeneous heat problem for a temperature function v(x,t).

Solution: Let

$$v(x,t) = u(x,t) - u_E(x)$$

and substitute into (1) to obtain

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}; \qquad v(0,t) = 0 = v(1,t); \qquad v(x,0) = -u_E(x)$$
 (2)

This is the basic Heat Problem.

c. Show that after a large time, the solution of the heat problem (1) is approximated by

$$u(x,t) \approx u_E(x) + Ce^{-\pi^2 t} \sin(\pi x)$$
.

Find C and comment on the physical significance of its sign. Illustrate the solution qualitatively by sketching typical temperature profiles t = constant and the central amplitude profile x = 1/2.

Solution: The solution to the basic heat problem (2) is

$$v(x,t) = \sum_{n=1}^{\infty} B_n \sin(n\pi x) e^{-n^2 \pi^2 t}$$

where

$$B_n = 2 \int_0^1 (-u_E(x)) \sin(n\pi x) dx = -b \int_0^1 x (1-x) \sin(n\pi x) dx = \frac{2b}{\pi^3 n^3} (1 - \cos \pi n)$$

Thus

$$B_n = \begin{cases} -\frac{4b}{\pi^3 n^3}, & n \text{ odd,} \\ 0, & n \text{ even.} \end{cases}$$

Hence

$$v(x,t) = -\frac{4b}{\pi^3} \sum_{m=1}^{\infty} \frac{\sin((2m-1)\pi x)}{(2m-1)^3} e^{-(2m-1)^2\pi^2 t}$$

After a large time, the first term dominates, so that

$$v(x,t) \approx B_1 \sin(\pi x) e^{-\pi^2 t} = -\frac{4b}{\pi^3} \sin(\pi x) e^{-\pi^2 t}$$

and

$$u(x,t) \approx u_E(x) - \frac{4b}{\pi^3} e^{-\pi^2 t} \sin(\pi x)$$

Thus $C = 4b/\pi^3$.

For plots, note that $u_E(x)$ is an upside-down parabola whose vertex is at (1/2, -b/8) in the ux-plane. Also,

$$u\left(\frac{1}{2},t\right) \approx u_E\left(\frac{1}{2}\right) - \frac{4b}{\pi^3}e^{-\pi^2 t}\sin\left(\frac{\pi}{2}\right) = \frac{b}{8} - \frac{4b}{\pi^3}e^{-\pi^2 t}.$$

The plots are below.

2 Problem 4

Show that if u is a solution of the generalized heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + b \frac{\partial u}{\partial x} + cu + g(x, t)$$
(3)

where b, c are constants, then

$$v(x,t) = e^{\alpha x + \beta t} u(x,t) \tag{4}$$

satisfies the standard heat equation

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + h(x, t)$$

for suitable choices of the constants α , β and function h(x,t). In this way, more complicated heat problems can be simplified.

Solution: Re-writing (4) for u(x,t) gives

$$u(x,t) = e^{-\alpha x - \beta t} v(x,t) \tag{5}$$

Note that

$$u_{t} = e^{-\alpha x - \beta t} (-\beta v + v_{t})$$

$$u_{x} = e^{-\alpha x - \beta t} (-\alpha v + v_{x})$$

$$u_{xx} = e^{-\alpha x - \beta t} (\alpha^{2} v - 2\alpha v_{x} + v_{xx})$$

$$(6)$$

Substituting into the generalized heat equation (3) gives

$$v_t = v_{xx} + (b - 2\alpha)v_x + (\alpha^2 + \beta - \alpha b + c)v + ge^{\alpha x + \beta t}$$

$$\tag{7}$$

To get rid of the v_x and v terms, we choose

$$b - 2\alpha = 0$$
$$\alpha^2 + \beta - \alpha b + c = 0$$

Solving for α , β gives

$$\alpha = b/2$$

$$\beta = -(\alpha^2 - \alpha b + c) = \frac{b^2}{4} - c$$

Choosing

$$h(x,t) = g(x,t) e^{\alpha x + \beta t} = g(x,t) e^{\alpha x + \beta t}$$

gives the standard heat equation

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + h(x, t).$$

3 Problem 6

Consider the heat problem with periodic boundary conditions

$$u_t = u_{xx}$$

$$u(0,t) = 0; u(1,t) = \cos \omega t; t > 0$$

$$u(x,0) = f(x) 0 < x < 1.$$

a. Prove that the steady-state solution, $u_{SS}(x,t)$, is unique.

Solution: The steady-state solution $u_{SS}(x,t)$ satisfies

$$(u_{SS})_t = (u_{Ss})_{xx}$$
 $u_{SS}(0,t) = 0; \quad u_{SS}(1,t) = \cos \omega t; \quad t > 0$
 u_{SS} periodic in time with period $\frac{2\pi}{\omega}$

Consider two steady-state solutions u_1 and u_2 . Let $v(x,t) = u_1 - u_2$. Then v satisfies

$$v_t = v_{xx}$$
 $v\left(0,t\right) = 0; \quad v\left(1,t\right) = 0; \quad t > 0$
 $v\left(x,t\right)$ periodic in time with period $\frac{2\pi}{\left\langle t\right\rangle}$

From class, solutions to the heat equation with homogenous (zero) Type I BCs approach zero exponentially as $t \to \infty$,

$$\lim_{t \to \infty} v\left(x, t\right) = 0$$

But v(x,t) is $2\pi/\omega$ -periodic, and hence the only possibility is that v(x,t) = 0, which implies $u_1 = u_2$ and the steady-state $u_{SS}(x,t)$ is unique.

b. Find $u_{SS}(x,t)$ by using the complex change of variable $u_{SS}(x,t) = \text{Re}\{U(x)e^{i\omega t}\}$.

Solution: Following the steps in class. The solution is given by making the transformation $x \to 1 - x$ to our solution from class,

$$u_{SS}(x,t) = \operatorname{Re}\left\{\frac{\exp\left(\sqrt{\frac{\omega}{2}}(1+i)x\right) - \exp\left(-\sqrt{\frac{\omega}{2}}(1+i)x\right)}{\exp\left(\sqrt{\frac{\omega}{2}}(1+i)\right) - \exp\left(-\sqrt{\frac{\omega}{2}}(1+i)\right)}Ae^{i\omega t}\right\}.$$