Solutions for Problem Set 2 : Variations of the Basic Heat Problem

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 2

Consider the non-homogeneous heat problem

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+b ; \quad u(0, t)=0=u(1, t) ; \quad u(x, 0)=0 \tag{1}
\end{equation*}
$$

where $t>0,0<x<1$ and b is constant.
a. Find the equilibrium solution $u_{E}(x)$.

Solution: The equilibrium solution $u_{E}(x)$ satisfies the PDE (1) and BCs,

$$
0=u_{E}^{\prime \prime}+b ; \quad u_{E}(0)=0=u_{E}(1) .
$$

The solution is

$$
u_{E}(x)=\frac{b}{2} x(1-x)
$$

b. Transform the heat problem (1) into a standard homogeneous heat problem for a temperature function $v(x, t)$.

Solution: Let

$$
v(x, t)=u(x, t)-u_{E}(x)
$$

and substitute into (1) to obtain

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}} ; \quad v(0, t)=0=v(1, t) ; \quad v(x, 0)=-u_{E}(x) \tag{2}
\end{equation*}
$$

This is the basic Heat Problem.
c. Show that after a large time, the solution of the heat problem (1) is approximated by

$$
u(x, t) \approx u_{E}(x)+C e^{-\pi^{2} t} \sin (\pi x)
$$

Find C and comment on the physical significance of its sign. Illustrate the solution qualitatively by sketching typical temperature profiles $t=$ constant and the central amplitude profile $x=1 / 2$.

Solution: The solution to the basic heat problem (2) is

$$
v(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x) e^{-n^{2} \pi^{2} t}
$$

where

$$
B_{n}=2 \int_{0}^{1}\left(-u_{E}(x)\right) \sin (n \pi x) d x=-b \int_{0}^{1} x(1-x) \sin (n \pi x) d x=\frac{2 b}{\pi^{3} n^{3}}(1-\cos \pi n)
$$

Thus

$$
B_{n}=\left\{\begin{array}{cc}
-\frac{4 b}{\pi^{3} n^{3}}, & n \text { odd } \\
0, & n \text { even } .
\end{array}\right.
$$

Hence

$$
v(x, t)=-\frac{4 b}{\pi^{3}} \sum_{m=1}^{\infty} \frac{\sin ((2 m-1) \pi x)}{(2 m-1)^{3}} e^{-(2 m-1)^{2} \pi^{2} t}
$$

After a large time, the first term dominates, so that

$$
v(x, t) \approx B_{1} \sin (\pi x) e^{-\pi^{2} t}=-\frac{4 b}{\pi^{3}} \sin (\pi x) e^{-\pi^{2} t}
$$

and

$$
u(x, t) \approx u_{E}(x)-\frac{4 b}{\pi^{3}} e^{-\pi^{2} t} \sin (\pi x)
$$

Thus $C=4 b / \pi^{3}$.
For plots, note that $u_{E}(x)$ is an upside-down parabola whose vertex is at $(1 / 2,-b / 8)$ in the $u x$-plane. Also,

$$
u\left(\frac{1}{2}, t\right) \approx u_{E}\left(\frac{1}{2}\right)-\frac{4 b}{\pi^{3}} e^{-\pi^{2} t} \sin \left(\frac{\pi}{2}\right)=\frac{b}{8}-\frac{4 b}{\pi^{3}} e^{-\pi^{2} t}
$$

The plots are below.

2 Problem 4

Show that if u is a solution of the generalized heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial x}+c u+g(x, t) \tag{3}
\end{equation*}
$$

where b, c are constants, then

$$
\begin{equation*}
v(x, t)=e^{\alpha x+\beta t} u(x, t) \tag{4}
\end{equation*}
$$

satisfies the standard heat equation

$$
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}+h(x, t)
$$

for suitable choices of the constants α, β and function $h(x, t)$. In this way, more complicated heat problems can be simplified.

Solution: Re-writing (4) for $u(x, t)$ gives

$$
\begin{equation*}
u(x, t)=e^{-\alpha x-\beta t} v(x, t) \tag{5}
\end{equation*}
$$

Note that

$$
\begin{align*}
u_{t} & =e^{-\alpha x-\beta t}\left(-\beta v+v_{t}\right) \\
u_{x} & =e^{-\alpha x-\beta t}\left(-\alpha v+v_{x}\right) \tag{6}\\
u_{x x} & =e^{-\alpha x-\beta t}\left(\alpha^{2} v-2 \alpha v_{x}+v_{x x}\right)
\end{align*}
$$

Substituting into the generalized heat equation (3) gives

$$
\begin{equation*}
v_{t}=v_{x x}+(b-2 \alpha) v_{x}+\left(\alpha^{2}+\beta-\alpha b+c\right) v+g e^{\alpha x+\beta t} \tag{7}
\end{equation*}
$$

To get rid of the v_{x} and v terms, we choose

$$
\begin{array}{r}
b-2 \alpha=0 \\
\alpha^{2}+\beta-\alpha b+c=0
\end{array}
$$

Solving for α, β gives

$$
\begin{aligned}
& \alpha=b / 2 \\
& \beta=-\left(\alpha^{2}-\alpha b+c\right)=\frac{b^{2}}{4}-c
\end{aligned}
$$

Choosing

$$
h(x, t)=g(x, t) e^{\alpha x+\beta t}=g(x, t) e^{\alpha x+\beta t}
$$

gives the standard heat equation

$$
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}+h(x, t) .
$$

3 Problem 6

Consider the heat problem with periodic boundary conditions

$$
\begin{aligned}
u_{t} & =u_{x x} \\
u(0, t) & =0 ; \quad u(1, t)=\cos \omega t ; \quad t>0 \\
u(x, 0) & =f(x) \quad 0<x<1 .
\end{aligned}
$$

a. Prove that the steady-state solution, $u_{S S}(x, t)$, is unique.

Solution: The steady-state solution $u_{S S}(x, t)$ satisfies

$$
\begin{aligned}
\left(u_{S S}\right)_{t} & =\left(u_{S s}\right)_{x x} \\
u_{S S}(0, t) & =0 ; \quad u_{S S}(1, t)=\cos \omega t ; \quad t>0
\end{aligned}
$$

$$
u_{S S} \text { periodic in time with period } \frac{2 \pi}{\omega}
$$

Consider two steady-state solutions u_{1} and u_{2}. Let $v(x, t)=u_{1}-u_{2}$. Then v satisfies

$$
\begin{aligned}
v_{t} & =v_{x x} \\
v(0, t) & =0 ; \quad v(1, t)=0 ; \quad t>0 \\
v(x, t) & \text { periodic in time with period } \frac{2 \pi}{\omega}
\end{aligned}
$$

From class, solutions to the heat equation with homogenous (zero) Type I BCs approach zero exponentially as $t \rightarrow \infty$,

$$
\lim _{t \rightarrow \infty} v(x, t)=0
$$

But $v(x, t)$ is $2 \pi / \omega$-periodic, and hence the only possibility is that $v(x, t)=0$, which implies $u_{1}=u_{2}$ and the steady-state $u_{S S}(x, t)$ is unique.
b. Find $u_{S S}(x, t)$ by using the complex change of variable $u_{S S}(x, t)=\operatorname{Re}\left\{U(x) e^{i \omega t}\right\}$.

Solution: Following the steps in class. The solution is given by making the transformation $x \rightarrow 1-x$ to our solution from class,

$$
u_{S S}(x, t)=\operatorname{Re}\left\{\frac{\exp \left(\sqrt{\frac{\omega}{2}}(1+i) x\right)-\exp \left(-\sqrt{\frac{\omega}{2}}(1+i) x\right)}{\exp \left(\sqrt{\frac{\omega}{2}}(1+i)\right)-\exp \left(-\sqrt{\frac{\omega}{2}}(1+i)\right)} A e^{i \omega t}\right\}
$$

