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1 Problem 2

Consider the non-homogeneous heat problem

@u

@t
=
@2u

@x2
+ b; u (0; t) = 0 = u (1; t) ; u (x; 0) = 0 (1)

where t > 0, 0 < x < 1 and b is constant.

a. Find the equilibrium solution uE (x).

Solution: The equilibrium solution uE (x) satis�es the PDE (1) and BCs,

0 = u00E + b; uE (0) = 0 = uE (1) :

The solution is

uE (x) =
b

2
x (1� x)

b. Transform the heat problem (1) into a standard homogeneous heat problem for a

temperature function v (x; t).

Solution: Let
v (x; t) = u (x; t)� uE (x)

and substitute into (1) to obtain

@v

@t
=
@2v

@x2
; v (0; t) = 0 = v (1; t) ; v (x; 0) = �uE (x) (2)

This is the basic Heat Problem.
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c. Show that after a large time, the solution of the heat problem (1) is approximated by

u (x; t) � uE (x) + Ce��
2t sin (�x) :

Find C and comment on the physical signi�cance of its sign. Illustrate the solution qual-

itatively by sketching typical temperature pro�les t = constant and the central amplitude

pro�le x = 1=2.

Solution: The solution to the basic heat problem (2) is

v (x; t) =
1X
n=1

Bn sin (n�x) e
�n2�2t

where

Bn = 2

Z 1

0

(�uE (x)) sin (n�x) dx = �b
Z 1

0

x (1� x) sin (n�x) dx = 2b

�3n3
(1� cos �n)

Thus

Bn =

(
� 4b
�3n3

; n odd,

0; n even.

Hence

v (x; t) = �4b
�3

1X
m=1

sin ((2m� 1)�x)
(2m� 1)3

e�(2m�1)
2�2t

After a large time, the �rst term dominates, so that

v (x; t) � B1 sin (�x) e��
2t = �4b

�3
sin (�x) e��

2t

and

u (x; t) � uE (x)�
4b

�3
e��

2t sin (�x)

Thus C = 4b=�3.

For plots, note that uE (x) is an upside-down parabola whose vertex is at (1=2;�b=8) in
the ux-plane. Also,

u

�
1

2
; t

�
� uE

�
1

2

�
� 4b

�3
e��

2t sin
��
2

�
=
b

8
� 4b

�3
e��

2t:

The plots are below.
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2 Problem 4

Show that if u is a solution of the generalized heat equation

@u

@t
=
@2u

@x2
+ b

@u

@x
+ cu+ g (x; t) (3)

where b, c are constants, then

v (x; t) = e�x+�tu (x; t) (4)

satis�es the standard heat equation

@v

@t
=
@2v

@x2
+ h (x; t)

for suitable choices of the constants �, � and function h (x; t). In this way, more complicated

heat problems can be simpli�ed.

Solution: Re-writing (4) for u (x; t) gives

u (x; t) = e��x��tv (x; t) (5)

Note that

ut = e��x��t (��v + vt)
ux = e��x��t (��v + vx) (6)

uxx = e��x��t
�
�2v � 2�vx + vxx

�
Substituting into the generalized heat equation (3) gives

vt = vxx + (b� 2�) vx +
�
�2 + � � �b+ c

�
v + ge�x+�t (7)

To get rid of the vx and v terms, we choose

b� 2� = 0

�2 + � � �b+ c = 0

Solving for �, � gives

� = b=2

� = �
�
�2 � �b+ c

�
=
b2

4
� c

Choosing

h (x; t) = g (x; t) e�x+�t = g (x; t) e�x+�t

gives the standard heat equation

@v

@t
=
@2v

@x2
+ h (x; t) :
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3 Problem 6

Consider the heat problem with periodic boundary conditions

ut = uxx

u (0; t) = 0; u (1; t) = cos!t; t > 0

u (x; 0) = f (x) 0 < x < 1:

a. Prove that the steady-state solution, uSS (x; t), is unique.
Solution: The steady-state solution uSS (x; t) satis�es

(uSS)t = (uSs)xx

uSS (0; t) = 0; uSS (1; t) = cos!t; t > 0

uSS periodic in time with period
2�

!

Consider two steady-state solutions u1 and u2. Let v (x; t) = u1 � u2. Then v satis�es

vt = vxx

v (0; t) = 0; v (1; t) = 0; t > 0

v (x; t) periodic in time with period
2�

!

From class, solutions to the heat equation with homogenous (zero) Type I BCs approach

zero exponentially as t!1,
lim
t!1

v (x; t) = 0

But v (x; t) is 2�=!-periodic, and hence the only possibility is that v (x; t) = 0, which implies

u1 = u2 and the steady-state uSS (x; t) is unique.

b. Find uSS (x; t) by using the complex change of variable uSS (x; t) = Re fU (x) ei!tg.
Solution: Following the steps in class. The solution is given by making the transforma-

tion x! 1� x to our solution from class,

uSS (x; t) = Re

(
exp

�p
!
2
(1 + i)x

�
� exp

�
�
p

!
2
(1 + i)x

�
exp

�p
!
2
(1 + i)

�
� exp

�
�
p

!
2
(1 + i)

� Aei!t

)
:
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