Solutions to Problems for Quasi-Linear PDEs

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004
1 Problem 1
Solve the traffic flow problem
ou ou

for an initial traffic group

L |z| > 1

f(x):{%@—uo, 2] < 1

(a) At what time ¢4 and position xs does a shock first form?
(b) Sketch the characteristics and indicate the region in the xt-plane in which the
solution is well-defined (i.e. does not break down).
(c) Sketch the density profile u = u (z,t) vs. x for several values of ¢ in the interval
0<t<ts.
Solution: (a) We can rewrite the PDE as
ou Ou
(1 —2u,1,0)- <%, % —1) =0
We write ¢, x and u as functions of (r; s), i.e. t(r;s), z (r;s), u (r;s). We have written
(r;s) to indicate r is the variable that parametrizes the curve, while s is a parameter
that indicates the position of the particular trajectory on the initial curve. Thus, the
parametric solution is
dt dx du
dr L dr o dr

with initial condition on r = 0,

t(0;s) =0, z(0;s) = s, u(0;s) = f(s).



where s € R. We find ¢ and u first, since these can be found independently from one

another. Integrating the ODEs and imposing the IC for ¢ and u gives
t(ris)=r,  u(rs)=f(s). (1)
Substituting for u (r; s) into the ODE for z (r; s) and integrating gives
x(r;s)=(1—=2f(s))r+ const
Imposing the IC z (0; s) = s gives
x(r;s)=(1—=2f(s))r+s. (2)

Combining (1) and (2), the characteristics are

t+s |s| > 1
r=(1-2f(s))t+s= 3 ’
=2 {(\s|—§)t+s, sl <1
The first shock occurs at time
1 1
ty = = =1 3
2max {f'(s)} 2(3) 3)
where the characteristics starting from s = —1 and s = 0 meet,
1 2 2
Ts=—-ty—1=—=ty,=——.
3 3 3

(b) Figure 1 sketch shows the zt-plane up to the shock time ¢t = ¢, and notes
the important characteristics by thick solid lines. The thick characteristics divide
the zt-plane into four regions. In Ry and Ry, |s| > 1 and u = f(s) = 1/3. In Ry,
—1 < s <0, and for fixed ¢, u increases linearly in z from 1/3t05/6. In R3, 0 < s <1
and u decreases linearly in x from 5/6 to 1/3.

(c) In Figure 2, we sketch the density profile u = u (z,t) vs. z at times t = 0, 1/2
andt =t;, = 1. To do so, we draw imaginary horizontal lines at ¢t = ¢, in the xt-plot in
part (b) and observe at what z-values these cross the important characteristics (thick
black lines). We already know how u varies in each region, for fixed time. Thus once
we know the z-values of the characteristics that start at s = —1, 0, 1, we draw the

corresponding u-values 1/3, 5/6, 1/3, and connect them with lines.
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Figure 1: Sketch of characteristics up to the shock time ¢ = ¢, = 1. Thick lines are

important characteristics.

1
S
X 05 .
>
O | | | | | | |
-2 -15 -1 -0.5 0 0.5 1 15 2
1
o
< 05F §
=
0 | | | | | | |
-2 -15 -1 -0.5 0 0.5 1 15 2
1 T T T T T
3 0
\E/ S \shock
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 2: Sketch of density profiles v = w(z,t) vs. z at times t = 0, 1/2 and
t=t, = 1.



2 Problem 2 : Water waves

The surface displacement for shallow water waves is governed by (in scaled coordi-
3 \ O0h Oh
l1+=h| —+4+—=0
( T3 ) or o

Here, h = 0 is the mean free surface of the water. Consider the initial water wave

nates),

profile
e(l+cosz), |z|<m
0, lz| > 7

h(z,0) = f (z) :{ (4)

(a) Find the parametric solution and characteristic curves.

Solution: The parametric solution is given by

dt _ dh_ o de g

=1+ 2h

A L
with initial conditions t (0) = 0, z(0) = s and h (z,0) = h(s,0). Solving the ODEs

subject to the initial conditions gives the parametric solution

t=r, h=f(s), x:(1+gf(3))t+s (5)

for s € R.

(b) Show that two characteristics starting at s = s; and s = s, where sy, s5 € (0, 7)

2 S1 — S9
i = — | —————=—
3e COS 1 — COS Sa

intersect at time

Show that
ting > %, for all s, 9 € (0,7)
and
s
ting — 32 as S, 89 — 5
Thus the solution breaks down along the characteristics starting at s = 7/2, when
t=t.=2/(3¢).

Solution: From (5), the solutions starting at s = s; and s = s, where s, s, €

(0,7) (and, without loss of generality, s; < s2) intersect when

3 3
(1 + §f (51)) tint + S1 = Tint = <1 + §f (82)) Lint + S2

Solving for the time t;,; gives

S2 — 51

f (1) = f(s2)

Wl N

Lint =



Since s1, 59 € (0, 7), substituting for f (s) from (4) gives

" 2 S9 — 51
mt 3e(l+cossy) —e(1+ cosss)
_ 2 _nzs (6)
3e COS §1 — COS S9
By the mean value theorem,
COS §1 — COS Sg = — (51 — S9)siné

for some £ € [s1, s9] € (0,7), so that (6) becomes
2 1

tin = 5.
! 3esin &

(7)

For this range of £ € [sy, s2] C (0,7), we have 0 < sin& < 1, so that (7) becomes
2 1 2
>

tin = 5. -
"7 3esin & 3¢
Note that as s1, s5 — /2, £ also approaches 7/2 and hence from (7),

. . 2
lim 5= lim ¢, = —
$1,82—7/2 E—m/2 3e

This implies that along the characteristic starting at s = /2, the solution breaks

down at t = t. = 2/ (3¢). The z-value where the breakdown occurs is

T = 1+§f<z) E—i-ﬁ— 1+§COS<E) 3+E_3+E
N 27\2/) )3 2 2 2/))3 2 3¢ 2

(c) Calculate Oh/0x using implicitly differentiation (the solution cannot be found
explicitly) and hence show that along the characteristic starting at s = 7/2,

lim — = -0
t—te a.iE

Thus the wave slope becomes vertical.

Solution: By the chain rule,

1 ’
Oh _ Ohor  0OhOs 0 ds 1 (s) (03@) _ §f,f (s)
2

o oroc T osor T g ®)

s (s)t+1
Note that
f(r/2) = —5sing = —¢,
and hence
oh B —€
or —3et+1

>
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Figure 3: Sketch of characteristics up to the shock time ¢t =t = 2/3. Thick lines are

important characteristics. We took € = 1.

Thus, the limit as t — ¢, (where t. = 2/ (3¢)) is

) . —£
lim — = lim —— =
t—t; 0T pot; —5et + 1

(d) Sketch the wave profile h (x,t.), giving the z-values where the wave is vertical
and where the maximum displacement occurs.

Note that the extrema of the displacement occurs where 0h/0x = 0, or, from (8),

oh  f'(s)

— =3~ ——=0 — — s =0 — =0,+£
or = I ()t + 1 e (—sinx) r=0,£7

I didn’t ask for this, but to plot the wave profile, you need to know what the char-
acteristics are doing. Figure 3 shows the important characteristics. Again, to find
the wave profiles at a given time t = tj, we draw an imaginary horizontal line at
t =ty in the xt-plot of the characteristics and observe at what z-values this line cross
the characteristics. We know the h values along each characteristic, and thus we can
construct a table of x and corresponding h values at time t = t;. Then we plot h
vs. x. Figure 4 illustrates the wave profiles at ¢t = 0,1/3,2/3, for ¢ = 1. The profile
becomes vertical along the s = 7/2 characteristic at time ¢t = 2/3 at © = 2/3 4+ 7/2.
Come and see me if you have questions about how to do this - it’s pretty simple once
you get the hang of it.

The interpretation of the plot is that after a time ¢t = 2/3 (recall € = 1), the wave

has moved a distance z = 2/3, it’s tail has gotten longer, and it’s front has steepened.
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Figure 4: Sketch of wave profiles at times t = 0, 1/3, 2/3. At t = 2/3, the wave
profile is vertical (Oh/0x = oo at © = 2/3 + 7/2, along the s = 7/2 characteristic.

Here, we took ¢ = 1.



3 Problem 3

Consider the quasi-linear PDE and initial condition

1
ut—i-uu:ﬁ—iu = 0, t >0, —00 < x < 00
u(z,0) = esinz, —0o<r<oo

where € > 0 is constant.
(a) Find the parametric solution and characteristic curves.
Solution: The PDE can be written as
1
(A, B,C) - (ug,uy, —1) = (u, 1, —§u) (U, ug, —1) = 0.

The characteristic curves are given by

dt dx du 1
%:le’ $:A:u, JzCz—éu
The initial conditions at r =0 are t = 0, x = s, u = f(s) = esins. Integrating the
ODEs and imposing the ICs gives
t=r, u:f(s)e_r/sz(s)e_t/2, x=2f(s) (1—6_T/2)—|—8:2f(8) (1—e_t/2)+s
(9)
where f (s) = esins.
(b) Give the solution w in implicit form by writing u in terms of z, ¢ (but not r,

s).

Solution: The second and third equations in (9) are
u=f(s)e '/? z=2f(s)(1—e"?) +s

Noting that f (s) = esins = ue'/?, we have

t/2
r = 2ue? (1 — e_t/Q) + arcsin (ue )
£

t/2
= 2u (et/2 — 1) + arcsin (ue )
€
Thus, the solution u is given implicitly via

uet/2

sin (z + 2u (1 — et/2)) = (10)

5
(c) For e = 1, show that the solution first breaks down at ¢ = t. = 2In2. Show
that along the characteristic through (x,t) = (7, 0), we have

lim u, = —o0.

t—te



Solution: The Jacobian is

(z,?) = det ( T s ) = det ( 116 27(s) <1 - e—r/Q) 1 > = —2f"(s) (1 — 6_T/2)—1

Q

d(r,s) 0

r tS

The solution breaks down when the Jacobian is zero, or
—2f'(s)(1—e"?)=1=0
Since r =t and f’ (s) = € cos s, we have
2ecoss (1 — e_t/2) =—1 (11)

Note that the breakdown must occur for ¢ > 0, since ¢t = 0 will not satisfy the
above equation. Also, (1 —e Y 2) > (0 since t > 0. Thus the breakdown occurs when
coss < 0 and ¢t > 0. The smallest time for breakdown occurs at the most negative

value of cos s, i.e., coss = —1, when

1— 1 — te/2

2e

1
te=-2In(1——
(-3)

Since ¢ = 1, the first breakdown occurs at t, = 21n 2.

or

To find the s for the characteristic that passes through (x,t) = (7, 0), we substitute

t =0, z = 7 into the equation for = in (9),
T=x=2f(s) (1—6_t/2>+828
Thus s = 7. Substituting s = 7 into (9) gives

x = 2¢e(sinm) (1 —e_t/Q) +r=m

u = e(sinm)e?=0

Thus = 7 and v = 0 along this characteristic. To find u,, we differentiate (10)

(with ¢ = 1) implicitly with respect to z,
cos (x + 2u (1 — etﬂ)) (1 + 2u, (1 — et/2)) = umet/2
Substituting x = 7 and v = 0 gives

— (1 + 2u, (1 — et/2)) = u:,;et/2
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Figure 5: Sketch of characteristics up to the shock time t = t. = 2In2. Thick lines

are important characteristics.

Solving for u, gives

o 1
Tet/2 =2
For s = 7, coss = —1, so that the solution breaks down along this characteristic
att =t.=2In2. Ast — t_, the limit of u, is
lim u, = lim - L = -0
t—ty oty et2 — 2

(d) For € = 1, sketch the characteristics and the solution profile at time t..

Solution: Since the initial condition is periodic, we must only plot the region
0 <z <2 t > 0. The solution is repeated in the other regions 2(n — 1)1 < z <
2nm, for all integers n. Note that x = 7 is a line of symmetry. To see this, consider

the characteristics s = 7/2 and s = 37/2 with ¢ = 1,

s _ s
s = 5 == x:2(1—et/2)+§
5 = g - x:—2(1—e_t/2)+3§:—<2(1—e_t/2)+g)+27r

A few characteristics are plotted in Figure 5 up to the time t = ¢..
Substituting € = 1 and ¢t = ¢, = 21n2 into the implicit solution (10) gives

sin (x — 2u) = 2u
and hence
x = 2u + arcsin (2u)

Choosing values for u in [0,0.5], we compute the corresponding z-values. Just be
careful that the angles arcsin returns can be in the first or second quadrant, so that

you get two sets of z-values

r = 2u+ arcsin (2u)

r = 2u-+7— arcsin (2u)

10
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Figure 6: Sketch of u(x,t.) profile (t. = 2In2, ¢ = 1). Since u(z,t) is 2w-periodic in

x, the u(z,t) is given by periodicity for values of x outside the region plotted.

Plotting these two sets of points gives you u (z,t.) in [0, 7]. To get w in [, 27], recall
it is 27 periodic. We first find = for w in [—0.5,0] and then translate the resulting
x-values by 27. The plot is given in Figure 6.
(e) Show that the solution exists for all time if 0 < e < 1/2.
Solution: Recall that the solution breaks down if there is an s and ¢ that satisfy
Eq. (11),
2¢ (cos s) (1 — e_t/2) =—1

For0<€§1/2,wehave0<2€§1andfortz(),()ﬁl—e_t/2<1, so that
’26 (coss) (1 — e_t/Z)’ <1

Thus Eq. (11) cannot be satisfied, and the solution is valid for all time ¢ > 0.

11



