Solutions to Problems for Quasi-Linear PDEs

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 1

Solve the traffic flow problem

$$
\frac{\partial u}{\partial t}+(1-2 u) \frac{\partial u}{\partial x}=0, \quad u(x, 0)=f(x)
$$

for an initial traffic group

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{3}, & |x|>1 \\
\frac{1}{2}\left(\frac{5}{3}-|x|\right), & |x| \leq 1
\end{array}\right.
$$

(a) At what time t_{s} and position x_{s} does a shock first form?
(b) Sketch the characteristics and indicate the region in the $x t$-plane in which the solution is well-defined (i.e. does not break down).
(c) Sketch the density profile $u=u(x, t)$ vs. x for several values of t in the interval $0 \leq t \leq t_{s}$.

Solution: (a) We can rewrite the PDE as

$$
(1-2 u, 1,0) \cdot\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial t},-1\right)=0
$$

We write t, x and u as functions of $(r ; s)$, i.e. $t(r ; s), x(r ; s), u(r ; s)$. We have written $(r ; s)$ to indicate r is the variable that parametrizes the curve, while s is a parameter that indicates the position of the particular trajectory on the initial curve. Thus, the parametric solution is

$$
\frac{d t}{d r}=1, \quad \frac{d x}{d r}=1-2 u, \quad \frac{d u}{d r}=0
$$

with initial condition on $r=0$,

$$
t(0 ; s)=0, \quad x(0 ; s)=s, \quad u(0 ; s)=f(s) .
$$

where $s \in \mathbb{R}$. We find t and u first, since these can be found independently from one another. Integrating the ODEs and imposing the IC for t and u gives

$$
\begin{equation*}
t(r ; s)=r, \quad u(r ; s)=f(s) \tag{1}
\end{equation*}
$$

Substituting for $u(r ; s)$ into the ODE for $x(r ; s)$ and integrating gives

$$
x(r ; s)=(1-2 f(s)) r+\mathrm{const}
$$

Imposing the $\mathrm{IC} x(0 ; s)=s$ gives

$$
\begin{equation*}
x(r ; s)=(1-2 f(s)) r+s \tag{2}
\end{equation*}
$$

Combining (1) and (2), the characteristics are

$$
x=(1-2 f(s)) t+s=\left\{\begin{array}{cc}
\frac{1}{3} t+s, & |s|>1 \\
\left(|s|-\frac{2}{3}\right) t+s, & |s| \leq 1
\end{array}\right.
$$

The first shock occurs at time

$$
\begin{equation*}
t_{s}=\frac{1}{2 \max \left\{f^{\prime}(s)\right\}}=\frac{1}{2\left(\frac{1}{2}\right)}=1 \tag{3}
\end{equation*}
$$

where the characteristics starting from $s=-1$ and $s=0$ meet,

$$
x_{s}=\frac{1}{3} t_{s}-1=-\frac{2}{3} t_{s}=-\frac{2}{3} .
$$

(b) Figure 1 sketch shows the $x t$-plane up to the shock time $t=t_{s}$ and notes the important characteristics by thick solid lines. The thick characteristics divide the $x t$-plane into four regions. In R_{1} and $R_{4},|s| \geq 1$ and $u=f(s)=1 / 3$. In R_{2}, $-1 \leq s \leq 0$, and for fixed t, u increases linearly in x from $1 / 3$ to $5 / 6$. In $R_{3}, 0 \leq s \leq 1$ and u decreases linearly in x from $5 / 6$ to $1 / 3$.
(c) In Figure 2, we sketch the density profile $u=u(x, t)$ vs. x at times $t=0,1 / 2$ and $t=t_{s}=1$. To do so, we draw imaginary horizontal lines at $t=t_{0}$ in the $x t$-plot in part (b) and observe at what x-values these cross the important characteristics (thick black lines). We already know how u varies in each region, for fixed time. Thus once we know the x-values of the characteristics that start at $s=-1,0,1$, we draw the corresponding u-values $1 / 3,5 / 6,1 / 3$, and connect them with lines.

Figure 1: Sketch of characteristics up to the shock time $t=t_{s}=1$. Thick lines are important characteristics.

Figure 2: Sketch of density profiles $u=u(x, t)$ vs. x at times $t=0,1 / 2$ and $t=t_{s}=1$.

2 Problem 2: Water waves

The surface displacement for shallow water waves is governed by (in scaled coordinates),

$$
\left(1+\frac{3}{2} h\right) \frac{\partial h}{\partial x}+\frac{\partial h}{\partial t}=0
$$

Here, $h=0$ is the mean free surface of the water. Consider the initial water wave profile

$$
h(x, 0)=f(x)=\left\{\begin{array}{cl}
\varepsilon(1+\cos x), & |x| \leq \pi \tag{4}\\
0, & |x|>\pi
\end{array}\right.
$$

(a) Find the parametric solution and characteristic curves.

Solution: The parametric solution is given by

$$
\frac{d t}{d r}=1, \quad \frac{d h}{d r}=0, \quad \frac{d x}{d r}=1+\frac{3}{2} h
$$

with initial conditions $t(0)=0, x(0)=s$ and $h(x, 0)=h(s, 0)$. Solving the ODEs subject to the initial conditions gives the parametric solution

$$
\begin{equation*}
t=r, \quad h=f(s), \quad x=\left(1+\frac{3}{2} f(s)\right) t+s \tag{5}
\end{equation*}
$$

for $s \in \mathbb{R}$.
(b) Show that two characteristics starting at $s=s_{1}$ and $s=s_{2}$ where $s_{1}, s_{2} \in(0, \pi)$ intersect at time

$$
t_{i n t}=\frac{2}{3 \varepsilon}\left(-\frac{s_{1}-s_{2}}{\cos s_{1}-\cos s_{2}}\right)
$$

Show that

$$
t_{i n t} \geq \frac{2}{3 \varepsilon}, \quad \text { for all } s_{1}, s_{2} \in(0, \pi)
$$

and

$$
t_{i n t} \rightarrow \frac{2}{3 \varepsilon}, \quad \text { as } s_{1}, s_{2} \rightarrow \frac{\pi}{2}
$$

Thus the solution breaks down along the characteristics starting at $s=\pi / 2$, when $t=t_{c}=2 /(3 \varepsilon)$.

Solution: From (5), the solutions starting at $s=s_{1}$ and $s=s_{2}$ where $s_{1}, s_{2} \in$ $(0, \pi)$ (and, without loss of generality, $s_{1}<s_{2}$) intersect when

$$
\left(1+\frac{3}{2} f\left(s_{1}\right)\right) t_{i n t}+s_{1}=x_{i n t}=\left(1+\frac{3}{2} f\left(s_{2}\right)\right) t_{i n t}+s_{2}
$$

Solving for the time $t_{\text {int }}$ gives

$$
t_{i n t}=\frac{2}{3} \frac{s_{2}-s_{1}}{f\left(s_{1}\right)-f\left(s_{2}\right)}
$$

Since $s_{1}, s_{2} \in(0, \pi)$, substituting for $f(s)$ from (4) gives

$$
\begin{align*}
t_{\text {int }} & =\frac{2}{3} \frac{s_{2}-s_{1}}{\varepsilon\left(1+\cos s_{1}\right)-\varepsilon\left(1+\cos s_{2}\right)} \\
& =\frac{2}{3 \varepsilon}\left(-\frac{s_{1}-s_{2}}{\cos s_{1}-\cos s_{2}}\right) \tag{6}
\end{align*}
$$

By the mean value theorem,

$$
\cos s_{1}-\cos s_{2}=-\left(s_{1}-s_{2}\right) \sin \xi
$$

for some $\xi \in\left[s_{1}, s_{2}\right] \subseteq(0, \pi)$, so that (6) becomes

$$
\begin{equation*}
t_{i n t}=\frac{2}{3 \varepsilon} \frac{1}{\sin \xi} \tag{7}
\end{equation*}
$$

For this range of $\xi \in\left[s_{1}, s_{2}\right] \subseteq(0, \pi)$, we have $0<\sin \xi \leq 1$, so that (7) becomes

$$
t_{\text {int }}=\frac{2}{3 \varepsilon} \frac{1}{\sin \xi} \geq \frac{2}{3 \varepsilon}
$$

Note that as $s_{1}, s_{2} \rightarrow \pi / 2, \xi$ also approaches $\pi / 2$ and hence from (7),

$$
\lim _{s_{1}, s_{2} \rightarrow \pi / 2} t_{i n t}=\lim _{\xi \rightarrow \pi / 2} t_{i n t}=\frac{2}{3 \varepsilon}
$$

This implies that along the characteristic starting at $s=\pi / 2$, the solution breaks down at $t=t_{c}=2 /(3 \varepsilon)$. The x-value where the breakdown occurs is

$$
x=\left(1+\frac{3}{2} f\left(\frac{\pi}{2}\right)\right) \frac{2}{3 \varepsilon}+\frac{\pi}{2}=\left(1+\frac{3 \varepsilon}{2} \cos \left(\frac{\pi}{2}\right)\right) \frac{2}{3 \varepsilon}+\frac{\pi}{2}=\frac{2}{3 \varepsilon}+\frac{\pi}{2} .
$$

(c) Calculate $\partial h / \partial x$ using implicitly differentiation (the solution cannot be found explicitly) and hence show that along the characteristic starting at $s=\pi / 2$,

$$
\lim _{t \rightarrow t_{c}^{-}} \frac{\partial h}{\partial x}=-\infty
$$

Thus the wave slope becomes vertical.
Solution: By the chain rule,

$$
\begin{equation*}
\frac{\partial h}{\partial x}=\frac{\partial h}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial h}{\partial s} \frac{\partial s}{\partial x}=0+f^{\prime}(s) \frac{\partial s}{\partial x}=f^{\prime}(s)\left(\frac{\partial x}{\partial s}\right)^{-1}=\frac{f^{\prime}(s)}{\frac{3}{2} f^{\prime}(s) t+1} \tag{8}
\end{equation*}
$$

Note that

$$
f^{\prime}(\pi / 2)=-\varepsilon \sin \frac{\pi}{2}=-\varepsilon
$$

and hence

$$
\frac{\partial h}{\partial x}=\frac{-\varepsilon}{-\frac{3}{2} \varepsilon t+1}
$$

Figure 3: Sketch of characteristics up to the shock time $t=t_{s}=2 / 3$. Thick lines are important characteristics. We took $\varepsilon=1$.

Thus, the limit as $t \rightarrow t_{c}^{-}\left(\right.$where $\left.t_{c}=2 /(3 \varepsilon)\right)$ is

$$
\lim _{t \rightarrow t_{c}^{-}} \frac{\partial h}{\partial x}=\lim _{t \rightarrow t_{c}^{-}} \frac{-\varepsilon}{-\frac{3}{2} \varepsilon t+1}=-\infty
$$

(d) Sketch the wave profile $h\left(x, t_{c}\right)$, giving the x-values where the wave is vertical and where the maximum displacement occurs.

Note that the extrema of the displacement occurs where $\partial h / \partial x=0$, or, from (8),

$$
\frac{\partial h}{\partial x}=\frac{f^{\prime}(s)}{\frac{3}{2} f^{\prime}(s) t+1}=0 \quad \Longleftrightarrow \quad \varepsilon(-\sin x)=0 \quad \Longleftrightarrow \quad x=0, \pm \pi
$$

I didn't ask for this, but to plot the wave profile, you need to know what the characteristics are doing. Figure 3 shows the important characteristics. Again, to find the wave profiles at a given time $t=t_{0}$, we draw an imaginary horizontal line at $t=t_{0}$ in the $x t$-plot of the characteristics and observe at what x-values this line cross the characteristics. We know the h values along each characteristic, and thus we can construct a table of x and corresponding h values at time $t=t_{0}$. Then we plot h vs. x. Figure 4 illustrates the wave profiles at $t=0,1 / 3,2 / 3$, for $\varepsilon=1$. The profile becomes vertical along the $s=\pi / 2$ characteristic at time $t=2 / 3$ at $x=2 / 3+\pi / 2$. Come and see me if you have questions about how to do this - it's pretty simple once you get the hang of it.

The interpretation of the plot is that after a time $t=2 / 3$ (recall $\varepsilon=1$), the wave has moved a distance $x=2 / 3$, it's tail has gotten longer, and it's front has steepened.

Figure 4: Sketch of wave profiles at times $t=0,1 / 3,2 / 3$. At $t=2 / 3$, the wave profile is vertical $(\partial h / \partial x=\infty$ at $x=2 / 3+\pi / 2$, along the $s=\pi / 2$ characteristic. Here, we took $\varepsilon=1$.

3 Problem 3

Consider the quasi-linear PDE and initial condition

$$
\begin{aligned}
u_{t}+u u_{x}+\frac{1}{2} u & =0, \quad t>0, \quad-\infty<x<\infty \\
u(x, 0) & =\varepsilon \sin x, \quad-\infty<x<\infty
\end{aligned}
$$

where $\varepsilon>0$ is constant.
(a) Find the parametric solution and characteristic curves.

Solution: The PDE can be written as

$$
(A, B, C) \cdot\left(u_{x}, u_{t},-1\right)=\left(u, 1,-\frac{1}{2} u\right) \cdot\left(u_{x}, u_{t},-1\right)=0
$$

The characteristic curves are given by

$$
\frac{d t}{d r}=B=1, \quad \frac{d x}{d r}=A=u, \quad \frac{d u}{d r}=C=-\frac{1}{2} u
$$

The initial conditions at $r=0$ are $t=0, x=s, u=f(s)=\varepsilon \sin s$. Integrating the ODEs and imposing the ICs gives
$t=r, \quad u=f(s) e^{-r / 2}=f(s) e^{-t / 2}, \quad x=2 f(s)\left(1-e^{-r / 2}\right)+s=2 f(s)\left(1-e^{-t / 2}\right)+s$
where $f(s)=\varepsilon \sin s$.
(b) Give the solution u in implicit form by writing u in terms of x, t (but not r, $s)$.

Solution: The second and third equations in (9) are

$$
u=f(s) e^{-t / 2}, \quad x=2 f(s)\left(1-e^{-t / 2}\right)+s
$$

Noting that $f(s)=\varepsilon \sin s=u e^{t / 2}$, we have

$$
\begin{aligned}
x & =2 u e^{t / 2}\left(1-e^{-t / 2}\right)+\arcsin \left(\frac{u e^{t / 2}}{\varepsilon}\right) \\
& =2 u\left(e^{t / 2}-1\right)+\arcsin \left(\frac{u e^{t / 2}}{\varepsilon}\right)
\end{aligned}
$$

Thus, the solution u is given implicitly via

$$
\begin{equation*}
\sin \left(x+2 u\left(1-e^{t / 2}\right)\right)=\frac{u e^{t / 2}}{\varepsilon} \tag{10}
\end{equation*}
$$

(c) For $\varepsilon=1$, show that the solution first breaks down at $t=t_{c}=2 \ln 2$. Show that along the characteristic through $(x, t)=(\pi, 0)$, we have

$$
\lim _{t \rightarrow t_{c}^{-}} u_{x}=-\infty
$$

Solution: The Jacobian is

$$
\frac{\partial(x, t)}{\partial(r, s)}=\operatorname{det}\left(\begin{array}{cc}
x_{r} & x_{s} \\
t_{r} & t_{s}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
u & 2 f^{\prime}(s)\left(1-e^{-r / 2}\right)+1 \\
1 & 0
\end{array}\right)=-2 f^{\prime}(s)\left(1-e^{-r / 2}\right)-1
$$

The solution breaks down when the Jacobian is zero, or

$$
-2 f^{\prime}(s)\left(1-e^{-r / 2}\right)-1=0
$$

Since $r=t$ and $f^{\prime}(s)=\varepsilon \cos s$, we have

$$
\begin{equation*}
2 \varepsilon \cos s\left(1-e^{-t / 2}\right)=-1 \tag{11}
\end{equation*}
$$

Note that the breakdown must occur for $t>0$, since $t=0$ will not satisfy the above equation. Also, $\left(1-e^{-t / 2}\right)>0$ since $t>0$. Thus the breakdown occurs when $\cos s<0$ and $t>0$. The smallest time for breakdown occurs at the most negative value of $\cos s$, i.e., $\cos s=-1$, when

$$
1-\frac{1}{2 \varepsilon}=e^{-t_{c} / 2}
$$

or

$$
t_{c}=-2 \ln \left(1-\frac{1}{2 \varepsilon}\right)
$$

Since $\varepsilon=1$, the first breakdown occurs at $t_{c}=2 \ln 2$.
To find the s for the characteristic that passes through $(x, t)=(\pi, 0)$, we substitute $t=0, x=\pi$ into the equation for x in (9),

$$
\pi=x=2 f(s)\left(1-e^{-t / 2}\right)+s=s
$$

Thus $s=\pi$. Substituting $s=\pi$ into (9) gives

$$
\begin{aligned}
x & =2 \varepsilon(\sin \pi)\left(1-e^{-t / 2}\right)+\pi=\pi \\
u & =\varepsilon(\sin \pi) e^{-t / 2}=0
\end{aligned}
$$

Thus $x=\pi$ and $u=0$ along this characteristic. To find u_{x}, we differentiate (10) (with $\varepsilon=1$) implicitly with respect to x,

$$
\cos \left(x+2 u\left(1-e^{t / 2}\right)\right)\left(1+2 u_{x}\left(1-e^{t / 2}\right)\right)=u_{x} e^{t / 2}
$$

Substituting $x=\pi$ and $u=0$ gives

$$
-\left(1+2 u_{x}\left(1-e^{t / 2}\right)\right)=u_{x} e^{t / 2}
$$

Figure 5: Sketch of characteristics up to the shock time $t=t_{c}=2 \ln 2$. Thick lines are important characteristics.

Solving for u_{x} gives

$$
u_{x}=\frac{1}{e^{t / 2}-2}
$$

For $s=\pi, \cos s=-1$, so that the solution breaks down along this characteristic at $t=t_{c}=2 \ln 2$. As $t \rightarrow t_{c}^{-}$, the limit of u_{x} is

$$
\lim _{t \rightarrow t_{c}^{-}} u_{x}=\lim _{t \rightarrow t_{c}^{-}} \frac{1}{e^{t / 2}-2}=-\infty
$$

(d) For $\varepsilon=1$, sketch the characteristics and the solution profile at time t_{c}.

Solution: Since the initial condition is periodic, we must only plot the region $0 \leq x \leq 2 \pi, t \geq 0$. The solution is repeated in the other regions $2(n-1) \pi \leq x \leq$ $2 n \pi$, for all integers n. Note that $x=\pi$ is a line of symmetry. To see this, consider the characteristics $s=\pi / 2$ and $s=3 \pi / 2$ with $\varepsilon=1$,

$$
\begin{aligned}
& s=\frac{\pi}{2} \quad \Longrightarrow \quad x=2\left(1-e^{-t / 2}\right)+\frac{\pi}{2} \\
& s=\frac{\pi}{2} \quad \Longrightarrow \quad x=-2\left(1-e^{-t / 2}\right)+\frac{3 \pi}{2}=-\left(2\left(1-e^{-t / 2}\right)+\frac{\pi}{2}\right)+2 \pi
\end{aligned}
$$

A few characteristics are plotted in Figure 5 up to the time $t=t_{c}$.
Substituting $\varepsilon=1$ and $t=t_{c}=2 \ln 2$ into the implicit solution (10) gives

$$
\sin (x-2 u)=2 u
$$

and hence

$$
x=2 u+\arcsin (2 u)
$$

Choosing values for u in $[0,0.5]$, we compute the corresponding x-values. Just be careful that the angles arcsin returns can be in the first or second quadrant, so that you get two sets of x-values

$$
\begin{aligned}
& x=2 u+\arcsin (2 u) \\
& x=2 u+\pi-\arcsin (2 u)
\end{aligned}
$$

Figure 6: Sketch of $u\left(x, t_{c}\right)$ profile $\left(t_{c}=2 \ln 2, \varepsilon=1\right)$. Since $u(x, t)$ is 2π-periodic in x, the $u(x, t)$ is given by periodicity for values of x outside the region plotted.

Plotting these two sets of points gives you $u\left(x, t_{c}\right)$ in $[0, \pi]$. To get u in $[\pi, 2 \pi]$, recall it is 2π periodic. We first find x for u in $[-0.5,0]$ and then translate the resulting x-values by 2π. The plot is given in Figure 6 .
(e) Show that the solution exists for all time if $0<\varepsilon \leq 1 / 2$.

Solution: Recall that the solution breaks down if there is an s and t that satisfy Eq. (11),

$$
2 \varepsilon(\cos s)\left(1-e^{-t / 2}\right)=-1
$$

For $0<\varepsilon \leq 1 / 2$, we have $0<2 \varepsilon \leq 1$ and for $t \geq 0,0 \leq 1-e^{-t / 2}<1$, so that

$$
\left|2 \varepsilon(\cos s)\left(1-e^{-t / 2}\right)\right|<1
$$

Thus Eq. (11) cannot be satisfied, and the solution is valid for all time $t \geq 0$.

