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1 Problem 1

Solve the traffic flow problem

∂u

∂t
+ (1 − 2u)

∂u

∂x
= 0, u (x, 0) = f (x)

for an initial traffic group

f (x) =

{
1
3
, |x| > 1

1
2

(
5
3
− |x|) , |x| ≤ 1

(a) At what time ts and position xs does a shock first form?

(b) Sketch the characteristics and indicate the region in the xt-plane in which the

solution is well-defined (i.e. does not break down).

(c) Sketch the density profile u = u (x, t) vs. x for several values of t in the interval

0 ≤ t ≤ ts.

Solution: (a) We can rewrite the PDE as

(1 − 2u, 1, 0) ·
(

∂u

∂x
,
∂u

∂t
,−1

)
= 0

We write t, x and u as functions of (r; s), i.e. t (r; s), x (r; s), u (r; s). We have written

(r; s) to indicate r is the variable that parametrizes the curve, while s is a parameter

that indicates the position of the particular trajectory on the initial curve. Thus, the

parametric solution is

dt

dr
= 1,

dx

dr
= 1 − 2u,

du

dr
= 0

with initial condition on r = 0,

t (0; s) = 0, x (0; s) = s, u (0; s) = f (s) .
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where s ∈ R. We find t and u first, since these can be found independently from one

another. Integrating the ODEs and imposing the IC for t and u gives

t (r; s) = r, u (r; s) = f (s) . (1)

Substituting for u (r; s) into the ODE for x (r; s) and integrating gives

x (r; s) = (1 − 2f (s)) r + const

Imposing the IC x (0; s) = s gives

x (r; s) = (1 − 2f (s)) r + s. (2)

Combining (1) and (2), the characteristics are

x = (1 − 2f (s)) t + s =

{
1
3
t + s, |s| > 1(|s| − 2

3

)
t + s, |s| ≤ 1

The first shock occurs at time

ts =
1

2 max {f ′ (s)} =
1

2
(

1
2

) = 1 (3)

where the characteristics starting from s = −1 and s = 0 meet,

xs =
1

3
ts − 1 = −2

3
ts = −2

3
.

(b) Figure 1 sketch shows the xt-plane up to the shock time t = ts and notes

the important characteristics by thick solid lines. The thick characteristics divide

the xt-plane into four regions. In R1 and R4, |s| ≥ 1 and u = f (s) = 1/3. In R2,

−1 ≤ s ≤ 0, and for fixed t, u increases linearly in x from 1/3 to 5/6. In R3, 0 ≤ s ≤ 1

and u decreases linearly in x from 5/6 to 1/3.

(c) In Figure 2, we sketch the density profile u = u (x, t) vs. x at times t = 0, 1/2

and t = ts = 1. To do so, we draw imaginary horizontal lines at t = t0 in the xt-plot in

part (b) and observe at what x-values these cross the important characteristics (thick

black lines). We already know how u varies in each region, for fixed time. Thus once

we know the x-values of the characteristics that start at s = −1, 0, 1, we draw the

corresponding u-values 1/3, 5/6, 1/3, and connect them with lines.
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Figure 1: Sketch of characteristics up to the shock time t = ts = 1. Thick lines are

important characteristics.
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Figure 2: Sketch of density profiles u = u (x, t) vs. x at times t = 0, 1/2 and

t = ts = 1.
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2 Problem 2 : Water waves

The surface displacement for shallow water waves is governed by (in scaled coordi-

nates), (
1 +

3

2
h

)
∂h

∂x
+

∂h

∂t
= 0

Here, h = 0 is the mean free surface of the water. Consider the initial water wave

profile

h (x, 0) = f (x) =

{
ε (1 + cos x) , |x| ≤ π

0, |x| > π
(4)

(a) Find the parametric solution and characteristic curves.

Solution: The parametric solution is given by

dt

dr
= 1,

dh

dr
= 0,

dx

dr
= 1 +

3

2
h

with initial conditions t (0) = 0, x (0) = s and h (x, 0) = h (s, 0). Solving the ODEs

subject to the initial conditions gives the parametric solution

t = r, h = f (s) , x =

(
1 +

3

2
f (s)

)
t + s (5)

for s ∈ R.

(b) Show that two characteristics starting at s = s1 and s = s2 where s1, s2 ∈ (0, π)

intersect at time

tint =
2

3ε

(
− s1 − s2

cos s1 − cos s2

)
Show that

tint ≥ 2

3ε
, for all s1, s2 ∈ (0, π)

and

tint → 2

3ε
, as s1, s2 → π

2

Thus the solution breaks down along the characteristics starting at s = π/2, when

t = tc = 2/ (3ε).

Solution: From (5), the solutions starting at s = s1 and s = s2 where s1, s2 ∈
(0, π) (and, without loss of generality, s1 < s2) intersect when(

1 +
3

2
f (s1)

)
tint + s1 = xint =

(
1 +

3

2
f (s2)

)
tint + s2

Solving for the time tint gives

tint =
2

3

s2 − s1

f (s1) − f (s2)
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Since s1, s2 ∈ (0, π), substituting for f (s) from (4) gives

tint =
2

3

s2 − s1

ε (1 + cos s1) − ε (1 + cos s2)

=
2

3ε

(
− s1 − s2

cos s1 − cos s2

)
(6)

By the mean value theorem,

cos s1 − cos s2 = − (s1 − s2) sin ξ

for some ξ ∈ [s1, s2] ⊆ (0, π), so that (6) becomes

tint =
2

3ε

1

sin ξ
(7)

For this range of ξ ∈ [s1, s2] ⊆ (0, π), we have 0 < sin ξ ≤ 1, so that (7) becomes

tint =
2

3ε

1

sin ξ
≥ 2

3ε

Note that as s1, s2 → π/2, ξ also approaches π/2 and hence from (7),

lim
s1,s2→π/2

tint = lim
ξ→π/2

tint =
2

3ε

This implies that along the characteristic starting at s = π/2, the solution breaks

down at t = tc = 2/ (3ε). The x-value where the breakdown occurs is

x =

(
1 +

3

2
f
(π

2

)) 2

3ε
+

π

2
=

(
1 +

3ε

2
cos
(π

2

)) 2

3ε
+

π

2
=

2

3ε
+

π

2
.

(c) Calculate ∂h/∂x using implicitly differentiation (the solution cannot be found

explicitly) and hence show that along the characteristic starting at s = π/2,

lim
t→t−c

∂h

∂x
= −∞

Thus the wave slope becomes vertical.

Solution: By the chain rule,

∂h

∂x
=

∂h

∂r

∂r

∂x
+

∂h

∂s

∂s

∂x
= 0 + f ′ (s)

∂s

∂x
= f ′ (s)

(
∂x

∂s

)−1

=
f ′ (s)

3
2
f ′ (s) t + 1

(8)

Note that

f ′ (π/2) = −ε sin
π

2
= −ε,

and hence
∂h

∂x
=

−ε

−3
2
εt + 1
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Figure 3: Sketch of characteristics up to the shock time t = ts = 2/3. Thick lines are

important characteristics. We took ε = 1.

Thus, the limit as t → t−c (where tc = 2/ (3ε)) is

lim
t→t−c

∂h

∂x
= lim

t→t−c

−ε

−3
2
εt + 1

= −∞

(d) Sketch the wave profile h (x, tc), giving the x-values where the wave is vertical

and where the maximum displacement occurs.

Note that the extrema of the displacement occurs where ∂h/∂x = 0, or, from (8),

∂h

∂x
=

f ′ (s)
3
2
f ′ (s) t + 1

= 0 ⇐⇒ ε (− sin x) = 0 ⇐⇒ x = 0,±π

I didn’t ask for this, but to plot the wave profile, you need to know what the char-

acteristics are doing. Figure 3 shows the important characteristics. Again, to find

the wave profiles at a given time t = t0, we draw an imaginary horizontal line at

t = t0 in the xt-plot of the characteristics and observe at what x-values this line cross

the characteristics. We know the h values along each characteristic, and thus we can

construct a table of x and corresponding h values at time t = t0. Then we plot h

vs. x. Figure 4 illustrates the wave profiles at t = 0, 1/3, 2/3, for ε = 1. The profile

becomes vertical along the s = π/2 characteristic at time t = 2/3 at x = 2/3 + π/2.

Come and see me if you have questions about how to do this - it’s pretty simple once

you get the hang of it.

The interpretation of the plot is that after a time t = 2/3 (recall ε = 1), the wave

has moved a distance x = 2/3, it’s tail has gotten longer, and it’s front has steepened.
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Figure 4: Sketch of wave profiles at times t = 0, 1/3, 2/3. At t = 2/3, the wave

profile is vertical (∂h/∂x = ∞ at x = 2/3 + π/2, along the s = π/2 characteristic.

Here, we took ε = 1.
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3 Problem 3

Consider the quasi-linear PDE and initial condition

ut + u ux +
1

2
u = 0, t > 0, −∞ < x < ∞

u (x, 0) = ε sin x, −∞ < x < ∞

where ε > 0 is constant.

(a) Find the parametric solution and characteristic curves.

Solution: The PDE can be written as

(A, B, C) · (ux, ut,−1) =

(
u, 1,−1

2
u

)
· (ux, ut,−1) = 0.

The characteristic curves are given by

dt

dr
= B = 1,

dx

dr
= A = u,

du

dr
= C = −1

2
u

The initial conditions at r = 0 are t = 0, x = s, u = f (s) = ε sin s. Integrating the

ODEs and imposing the ICs gives

t = r, u = f (s) e−r/2 = f (s) e−t/2, x = 2f (s)
(
1 − e−r/2

)
+s = 2f (s)

(
1 − e−t/2

)
+s

(9)

where f (s) = ε sin s.

(b) Give the solution u in implicit form by writing u in terms of x, t (but not r,

s).

Solution: The second and third equations in (9) are

u = f (s) e−t/2, x = 2f (s)
(
1 − e−t/2

)
+ s

Noting that f (s) = ε sin s = uet/2, we have

x = 2uet/2
(
1 − e−t/2

)
+ arcsin

(
uet/2

ε

)

= 2u
(
et/2 − 1

)
+ arcsin

(
uet/2

ε

)

Thus, the solution u is given implicitly via

sin
(
x + 2u

(
1 − et/2

))
=

uet/2

ε
(10)

(c) For ε = 1, show that the solution first breaks down at t = tc = 2 ln 2. Show

that along the characteristic through (x, t) = (π, 0), we have

lim
t→t−c

ux = −∞.
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Solution: The Jacobian is

∂ (x, t)

∂ (r, s)
= det

(
xr xs

tr ts

)
= det

(
u 2f ′ (s)

(
1 − e−r/2

)
+ 1

1 0

)
= −2f ′ (s)

(
1 − e−r/2

)−1

The solution breaks down when the Jacobian is zero, or

−2f ′ (s)
(
1 − e−r/2

)− 1 = 0

Since r = t and f ′ (s) = ε cos s, we have

2ε cos s
(
1 − e−t/2

)
= −1 (11)

Note that the breakdown must occur for t > 0, since t = 0 will not satisfy the

above equation. Also,
(
1 − e−t/2

)
> 0 since t > 0. Thus the breakdown occurs when

cos s < 0 and t > 0. The smallest time for breakdown occurs at the most negative

value of cos s, i.e., cos s = −1, when

1 − 1

2ε
= e−tc/2

or

tc = −2 ln

(
1 − 1

2ε

)
Since ε = 1, the first breakdown occurs at tc = 2 ln 2.

To find the s for the characteristic that passes through (x, t) = (π, 0), we substitute

t = 0, x = π into the equation for x in (9),

π = x = 2f (s)
(
1 − e−t/2

)
+ s = s

Thus s = π. Substituting s = π into (9) gives

x = 2ε (sin π)
(
1 − e−t/2

)
+ π = π

u = ε (sin π) e−t/2 = 0

Thus x = π and u = 0 along this characteristic. To find ux, we differentiate (10)

(with ε = 1) implicitly with respect to x,

cos
(
x + 2u

(
1 − et/2

)) (
1 + 2ux

(
1 − et/2

))
= uxe

t/2

Substituting x = π and u = 0 gives

− (1 + 2ux

(
1 − et/2

))
= uxe

t/2
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Figure 5: Sketch of characteristics up to the shock time t = tc = 2 ln 2. Thick lines

are important characteristics.

Solving for ux gives

ux =
1

et/2 − 2
For s = π, cos s = −1, so that the solution breaks down along this characteristic

at t = tc = 2 ln 2. As t → t−c , the limit of ux is

lim
t→t−c

ux = lim
t→t−c

1

et/2 − 2
= −∞

(d) For ε = 1, sketch the characteristics and the solution profile at time tc.

Solution: Since the initial condition is periodic, we must only plot the region

0 ≤ x ≤ 2π, t ≥ 0. The solution is repeated in the other regions 2 (n − 1) π ≤ x ≤
2nπ, for all integers n. Note that x = π is a line of symmetry. To see this, consider

the characteristics s = π/2 and s = 3π/2 with ε = 1,

s =
π

2
=⇒ x = 2

(
1 − e−t/2

)
+

π

2

s =
π

2
=⇒ x = −2

(
1 − e−t/2

)
+

3π

2
= −

(
2
(
1 − e−t/2

)
+

π

2

)
+ 2π

A few characteristics are plotted in Figure 5 up to the time t = tc.

Substituting ε = 1 and t = tc = 2 ln 2 into the implicit solution (10) gives

sin (x − 2u) = 2u

and hence

x = 2u + arcsin (2u)

Choosing values for u in [0, 0.5], we compute the corresponding x-values. Just be

careful that the angles arcsin returns can be in the first or second quadrant, so that

you get two sets of x-values

x = 2u + arcsin (2u)

x = 2u + π − arcsin (2u)
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Figure 6: Sketch of u(x, tc) profile (tc = 2 ln 2, ε = 1). Since u(x, t) is 2π-periodic in

x, the u(x, t) is given by periodicity for values of x outside the region plotted.

Plotting these two sets of points gives you u (x, tc) in [0, π]. To get u in [π, 2π], recall

it is 2π periodic. We first find x for u in [−0.5, 0] and then translate the resulting

x-values by 2π. The plot is given in Figure 6.

(e) Show that the solution exists for all time if 0 < ε ≤ 1/2.

Solution: Recall that the solution breaks down if there is an s and t that satisfy

Eq. (11),

2ε (cos s)
(
1 − e−t/2

)
= −1

For 0 < ε ≤ 1/2, we have 0 < 2ε ≤ 1 and for t ≥ 0, 0 ≤ 1 − e−t/2 < 1, so that

∣∣2ε (cos s)
(
1 − e−t/2

)∣∣ < 1

Thus Eq. (11) cannot be satisfied, and the solution is valid for all time t ≥ 0.
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