Problem Set 2: Variations of the Basic Heat Problem

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 1

Consider the non-homogeneous heat problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \qquad u(0,t) = b_0, \qquad u(1,t) = b_1; \qquad u(x,0) = 0$$

where b_0 , b_1 are constants.

- **a.** Find the equilibrium solution $u_E(x)$, and transform the problem to a standard homogeneous problem for a temperature function v(x,t).
 - **b.** Show that for large t,

$$u(x,t) \approx u_E(x) + Ce^{-\pi^2 t} \sin \pi x$$

Find C.

2 Problem 2

Consider the non-homogeneous heat problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + b; \qquad u(0,t) = 0 = u(1,t); \qquad u(x,0) = 0 \tag{1}$$

where t > 0, 0 < x < 1 and b is constant.

- **a.** Find the equilibrium solution $u_E(x)$.
- **b.** Transform the heat problem (1) into a standard homogeneous heat problem for a temperature function v(x,t).

c. Show that after a large time, the solution of the heat problem (1) is approximated by

$$u(x,t) \approx u_E(x) + Ce^{-\pi^2 t} \sin(\pi x)$$
.

Find C and comment on the physical significance of its sign. Illustrate the solution qualitatively by sketching typical temperature profiles t = constant and the central amplitude profile x = 1/2.

3 Problem 3

Transform the heat problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \qquad u(0,t) = g_1(t); \qquad u(1,t) = g_2(t); \qquad u(x,0) = f(x)$$

with non-homogeneous boundary conditions into a standard problem (i.e. one with homogeneous BCs) in terms of the unknown function v(x,t).

4 Problem 4

Show that if u is a solution of the generalized heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + b \frac{\partial u}{\partial x} + cu + g(x, t)$$

where b, c are constants, then

$$v\left(x,t\right) = e^{\alpha x + \beta t} u\left(x,t\right)$$

satisfies the standard heat equation

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + h(x, t)$$

for suitable choices of the constants α , β and function h(x,t). In this way, more complicated heat problems can be simplified.

5 Problem 5

Prove that the heat problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + h(x,t); \qquad \frac{\partial u}{\partial x}(0,t) = 0 = \frac{\partial u}{\partial x}(1,t); \qquad u(x,0) = f(x)$$

with t > 0, $0 \le x \le 1$ has at most one solution (subject to appropriate continuity assumptions).

6 Problem 6

Consider the heat problem with periodic boundary conditions

$$u_t = u_{xx}$$

$$u(0,t) = 0; u(1,t) = \cos \omega t; t > 0$$

$$u(x,0) = f(x) 0 < x < 1.$$

- **a.** Prove that the steady-state solution, $u_{SS}(x,t)$, is unique.
- **b.** Find $u_{SS}(x,t)$ by using the complex change of variable $u_{SS}(x,t) = \text{Re}\{U(x)e^{i\omega t}\}$.

7 Problem 7 Fourier's Ring

Consider a slender homogeneous ring which is insulated laterally. Let x denote the distance along the ring and let l be the circumference of the ring.

a. Show that the temperature u(x,t) satisfies (see Haberman §2.4.2)

$$u_t = \kappa u_{xx};$$
 $u(x+l,t) = u(x,t)$

b. Introduce a non-dimensional distance and time to the initial value problem

$$u_{t} = u_{xx}; 0 < x < 1, t > 0$$

$$u(x+2,t) = u(x,t); t > 0$$

$$u(x,0) = f(x) 0 < x < 1.$$
(2)

Note that your scaling for x will determine the scaled wavelength - find the one that gives you a scaled wavelength of 2.

c. Use separation of variables and Fourier Series to obtain the solution to (2):

$$u(x,t) = A_0 + \sum_{n=1}^{\infty} e^{-n^2 \pi^2 t} \left(A_n \cos(n\pi x) + B_n \sin(n\pi x) \right)$$

Give formulae for the coefficients A_n , B_n in terms of f(x).

d. Prove that (2) has at most one solution. Hint: consider $\Delta(t) = \int_0^1 (u_1(x,t) - u_2(x,t))^2 dx$ where u_1, u_2 are solutions to (2).

8 Problem 8

Consider the two Heat Problems,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \qquad u(0,t) = 0 = u(1,t); \qquad u(x,0) = f(x)$$
(3)

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \qquad \frac{\partial u}{\partial x}(0, t) = 0 = \frac{\partial u}{\partial x}(1, t); \qquad u(x, 0) = f(x)$$
(4)

for t > 0 and $0 \le x \le 1$. Assume f(x) is piecewise smooth on [0,1] and continuous on (0,1).

- **a.** Write down (don't need to derive) the solution for each problem, and list the formulae for the Fourier coefficients.
- **b.** At t = 0, you have a Sine Series and a Cosine Series for f(x). Where are these two series equal? Where are they equal to f(x)?
- **c.** The point is, you can represent f(x) on (0,1) in multiple ways, but the choice of representations is based on the eigenfunctions that give solutions to the particular Heat Problem.