Problems for Infinite Spatial Domain Prolems and the Fourier Transform

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 1

(i) Show that

$$
u(x, t)=u_{0} \operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right), \quad t>0, \quad x \in \mathbb{R}
$$

where u_{0} is a constant, is a solution of the heat equation

$$
u_{t}=u_{x x}
$$

and satisfies the initial condition

$$
u(x, 0)=f(x)=\left\{\begin{array}{cc}
u_{0}, & \text { if } x>0 \\
0, & \text { if } x=0 \\
-u_{0}, & \text { if } x<0
\end{array}\right.
$$

in the sense that

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=f(x) .
$$

NOTE: All that is required is a change of variable in the integral, and then writing the integral in terms of the error function erf. Also, $f(x)$ does not decay as $x \rightarrow \infty$, but it turns out this requirement can be relaxed as long as the integrals exist.
(ii) Give a physical interpretation of the solution. Sketch the curves $u(x, t)=$ const in the $x t$-plane.
(iii) Derive the solution (i) from the general solution we derived in class in terms of the heat kernel $K(s, x, t)$, using the initial temperature $u(x, 0)=f(x)$.

2 Problem 2

(i) Find the temperature $u(x, t)$ of a semi-infinite $\operatorname{rod}(x \geq 0)$, whose end $(x=0)$ is kept at a temperature of zero, and with an initial hot-spot, $u(x, 0)=f(x)$, where

$$
f(x)=\left\{\begin{array}{cc}
u_{0}, & \text { if } x \in\left(x_{0}, x_{1}\right) \\
0, & \text { if } x \in\left[0, x_{0}\right) \cup\left(x_{1}, \infty\right)
\end{array}\right.
$$

with x_{0}, x_{1} constants, $0 \leq x_{0}<x_{1}$. Sketch the temperature profiles $t=\operatorname{const}$ (i.e., $u\left(x, t_{0}\right)$ in the $u x$-plane for various fixed times t_{0}), $x=$ const (i.e., $u\left(x_{0}, t\right)$ in the $u t$-plane for various fixed x_{0}) and the level curves $u(x, t)=$ const in the $x t$-plane. See note below.
(ii) Repeat (i) with the end of the rod $(x=0)$ insulated. See note below.
(iii) Referring to (ii), show that the temperature of the insulated end is a maximum at time

$$
t=\frac{x_{1}^{2}-x_{0}^{2}}{4 \kappa\left(\log x_{1}-\log x_{0}\right)}
$$

where κ is the thermal diffusivity.
NOTE: in both (i) and (ii), just use the general solution we derived in class with the heat kernel, by suitably extending $f(x)$ to the whole real line (i.e. odd extension or even extension - see class notes). The integrals in the solution can then be expressed as the sum of four terms involving error functions erf.

3 Problem 3

Show that

$$
u(x, y)=\frac{2 u_{0}}{\pi} \arctan \left(\frac{x}{y}\right)
$$

where u_{0} is constant, is a solution of Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

and satisfies the boundary condition

$$
\lim _{y \rightarrow 0^{+}} u(x, y)=f(x)
$$

Give a physical interpretation of the solution (i.e. how does this relate to what Heat Problem?). Sketch the isothermal curves (level curves) $u(x, y)=$ const in the $x y$-plane. Note that in polar coordinates,

$$
\theta=\arctan \left(\frac{x}{y}\right)
$$

where θ is the angle measured from the y-axis ($\theta=0$ is the y-axis) and increasing counterclockwise.

