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1 Problem 2

Find the Fourier sine and cosine series of
. 1
f(a:)zi(l—a:), 0<z<l.
a. State a theorem which proves convergence of each series. Graph the functions to which

they converge.

b. Show that the Fourier sine series cannot be differentiated termwise (term-by-term).

Show that the Fourier cosine series converges uniformly.

2 Problem 3

A bar with initial temperature profile f (z) > 0, with ends held at 0° C, will cool as t — oo,
and approach a steady-state temperature 0°C. However, whether or not all parts of the bar
start cooling initially depends on the shape of the initial temperature profile. The following

example may enable you to discover the relationship.
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a. Find an initial temperature profile )‘ (x), 0 <
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b. Solve the problem
Up = Ugy; w(0,t) =0=u(l,t); u(z,0) = f(z).

This is easy, you can just write down the solution we had in class - but make sure you know

how to get it.

c. Show that for some x, 0 < x < 1, u, (x,0) is positive and for others it is negative.
How is the sign of u; (x, 0) related to the shape of the initial temperature profile? How is the
sign of uy (x,t), t > 0, related to subsequent temperature profiles? Graph the temperature
profile for ¢ = 0,0.2,0.5,1 on the same axis (you may use Matlab).



