Problems for The 1-D Heat Equation

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 2

Find the Fourier sine and cosine series of

$$f(x) = \frac{1}{2}(1-x), \quad 0 < x < 1.$$

a. State a theorem which proves convergence of each series. Graph the functions to which they converge.

b. Show that the Fourier sine series cannot be differentiated termwise (term-by-term). Show that the Fourier cosine series converges uniformly.

2 Problem 3

A bar with initial temperature profile f(x) > 0, with ends held at 0° C, will cool as $t \to \infty$, and approach a steady-state temperature 0°C. However, whether or not all parts of the bar start cooling initially depends on the shape of the initial temperature profile. The following example may enable you to discover the relationship.

- **a.** Find an initial temperature profile f(x), $0 \le x \le 1$, which is a linear combination of $\sin \pi x$ and $\sin 3\pi x$, and satisfies $\frac{df}{dx}(0) = 0 = \frac{df}{dx}(1)$, $f(\frac{1}{2}) = 4$.
 - **b.** Solve the problem

$$u_t = u_{xx};$$
 $u(0,t) = 0 = u(1,t);$ $u(x,0) = f(x).$

This is easy, you can just write down the solution we had in class - but make sure you know how to get it.

c. Show that for some x, $0 \le x \le 1$, $u_t(x,0)$ is positive and for others it is negative. How is the sign of $u_t(x,0)$ related to the shape of the initial temperature profile? How is the sign of $u_t(x,t)$, t>0, related to subsequent temperature profiles? Graph the temperature profile for t=0,0.2,0.5,1 on the same axis (you may use Matlab).