
3 Problem 4

Solve the inhomogeneous heat problem with type I boundary conditions:

@u

@t
=
@2u

@x2
; u (0; t) = 0 = u (1; t) ; u (x; 0) = P" (x)

where t > 0, 0 � x � 1, and

P" (x) =

(
0 if

��x� 1
2

�� > "
2

u0
"
if
��x� 1

2

�� � "
2

(5)

Note: you already know the solution (just replace P" (x) with f (x) and write down the

solution from class). Using symmetry of P" (x) about 1/2 can be used to simplify the

calculation of the Fourier coe¢ cients.
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Solution: This is the Heat Problem with Type I homogeneous BCs. The solution we

derived in class is, with f (x) replaced by P" (x),

u (x; t) =
1X
n=1

un (x; t) =
1X
n=1

Bn sin (n�x) e
�n2�2t (6)

where the Bn�s are the Fourier coe¢ cients of f (x) = P" (x), given by

Bn = 2

Z 1

0

P" (x) sin (n�x) dx

Breaking the integral into three pieces and substituting for P" (x) from (5) gives

Bn = 2

Z 1=2�"=2

0

P" (x) sin (n�x) dx+ 2

Z 1=2+"=2

1=2�"=2
P" (x) sin (n�x) dx+ 2

Z 1

1=2+"=2

P" (x) sin (n�x) dx

= 0 + 2

Z 1=2+"=2

1=2�"=2

u0
"
sin (n�x) dx+ 0

=
2u0
"

�
�cos (n�x)

n�

�1=2+"=2
1=2�"=2

= u0
cos
�
n�
2
(1� ")

�
� cos

�
n�
2
(1 + ")

�
"n�=2

(7)

We apply the cosine rule

cos (r � s)� cos (r + s) = 2 sin r sin s
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with r = n�=2, s = n�"=2 to Eq. (7),

Bn =
4u0
"n�

sin
n�

2
sin
n�"

2

When n is even (and nonzero), i.e. n = 2m for some integer m,

B2m =
2u0
"m�

sinm� sinm�" = 0

When n is odd, i.e. n = 2m� 1 for some integer m,

B2m�1 = 2u0 (�1)m+1
sin ((2m� 1)�"=2)
(2m� 1)�"=2 : (8)

(a) The temperature at the midpoint of the rod, x = 1=2, at scaled time t = 1=�2 is,

from (6) and (8),

u (x; t) =
1X
m=1

2u0 (�1)m+1
sin ((2m� 1)�"=2)
(2m� 1)�"=2 sin

�
(2m� 1) �

2

�
e�(2m�1)

2

=
1X
m=1

2u0

e(2m�1)
2

�
sin ((2m� 1)�"=2)
(2m� 1)�"=2

�
:

For t � 1=�2, the �rst term gives a good approximation to u (x; t),

u

�
1

2
;
1

�2

�
� u1

�
1

2
;
1

�2

�
=
2u0
e

�
sin (�"=2)

�"=2

�
:

To distinguish between pulses with " = 1=1000 and " = 1=2000, note that lim"!0
sin�"=2
�"=2

= 1,

and so for smaller and smaller ", the corresponding temperature u
�
1
2
; 1
�2

�
gets closer and

closer to 2u0=e,

u

�
1

2
;
1

�2

�
� u1

�
1

2
;
1

�2

�
=
2u0
e

�
1� �2"2

2 � 3! + � � �
�
; "� 1:

In particular,

u1

�
1

2
;
1

�2
; " =

1

1000

�
� u1

�
1

2
;
1

�2
; " =

1

2000

�
=

2u0
e

�
sin (�=2000)

�=2000
� sin (�=4000)

�=4000

�
� �2u0

e
� 3:1� 10�7

Thus it is hard to distinguish these two temperature distributions, at least by measuring the

temperature at the center of the rod at time t = 1=�2. By this time, di¤usion has smoothed

out some of the details of the initial condition.
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Figure 1: Time temperature pro�les u (x0; t) at x0 = 0:5, 0:4 and 0:1 (from top to bottom).

The t-axis is the time pro�le corresponding to x0 = 0, 1.

(b) Illustrate the solution qualitatively by sketching (i) some typical temperature pro�les
in the u � t plane (i.e. x = constant) and in the u � x plane (i.e. t = constant), and (ii)

some typical level curves u (x; t) = constant in the x � t plane. At what points of the set
D = f(x; t) : 0 � x � 1; t � 0g is u (x; t) discontinuous?
The solution u (x; t) is discontinuous at t = 0 at the points x = (1� ") =2. That said,

u (x; t) is piecewise continuous on the entire interval [0; 1]. Thus, the Fourier series for u (x; 0)

converges everywhere on the interval and equals u (x; 0) at all points except x = (1� ") =2.
The temperature pro�les (u� t plane, u� x plane), 3D solution and level curves are shown.

4 Problem 5

Consider two iron rods (thermal di¤usivity � = 0:15 cm2 sec�1) each 20 cm long and with

insulated sides, one at a temperature of 100oC and the other at 0oC throughout. The rods
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Figure 2: Spatial temperature pro�les u (x; t0) at t0 = 0 (dash), 0:001, 0:01, 0:1. The x-axis

from 0 to 1 is the limiting temperature pro�le u (x; t0) as t0 !1.
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are joined end to end in perfect thermal contact, and their free ends are kept at 0oC. Show

that the temperature at the interface 10 minutes after contact has been made approximately

36.5oC. Find an upper bound for the error in your answer. Can this method be applied if

the rods are made of glass (thermal di¤usivity � = 0:006 cm2 sec�1)?

Solution: The rods are placed end-to-end and treated as one rod with length l = 40 cm.
We de�ne the dimensionless spatial coordinate x = x0=l. Let u (x; t) be the temperature in

the joined rods, for x 2 [0; 1] and t � 0. The join is at x = 1=2. The initial temperature

distribution in the joined rods is

u (x; 0) = f (x) =

(
100; 0 � x � 1=2;
0; 1=2 � x � 1:

(9)

Since the ends of the rod are held at 0o C, the boundary conditions are u (0; t) = 0 = u (1; t).

Since there are no sources in the rods, the homogeneous Heat Equation ut = uxx governs the

variation in temperature. The problem for u (x; t) is thus the basic Heat Problem with Type

I homogeneous BCs and IC f (x). From the derivation in class, we found the solution to be

u (x; t) =
1X
n=1

Bn sin (n�x) exp
�
�n2�2t

�
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Figure 3: Level curves u (x; t) =u0 = C for various values of the constant C. Numbers

adjacent to curves indicate the value of C. The line segment (1� ") =2 � x � (1 + ") =2 at
t = 0 is the level curve with C = 1=" = 10. The lines x = 0 and x = 1 are also level curves

with C = 0.
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where

Bn = 2

Z 1

0

f (x) sin (n�x) dx (10)

To save time, we note that we only desire the solution at x = 1=2,

u (x; t) =
1X
n=1

Bn sin
�n�
2

�
exp

�
�n2�2t

�
Since sin (n�=2) is zero for even n, the sum is over the odd terms,

u (x; t) =
1X
k=1

B2k�1 sin

�
(2k � 1)�

2

�
exp

�
� (2k � 1)2 �2t

�
=

1X
k=1

B2k�1 (�1)k�1 exp
�
� (2k � 1)2 �2t

�
: (11)

Substituting the IC (9) into (10) and setting n = 2k � 1 gives

B2k�1 = 200

Z 1=2

0

sin ((2k � 1)�x) dx = 200

(2k � 1)�

�
1� cos

�
(2k � 1)�

2

��
=

200

(2k � 1)� :

(12)

Substituting the B2k�1 in (12) into the expression (11) for u (1=2; t) gives

u

�
1

2
; t

�
=
200

�

1X
k=1

(�1)k�1

(2k � 1) exp
�
� (2k � 1)2 �2t

�
: (13)

We are asked to �ne the temperature at x = 1=2 after t0 = 10 minutes. This corresponds

to a scaled time of

t10 =
�

l2
� 10 mins

= 0:15=402 � 10� 60 ' 0:056 for iron (� = 0:15 cm2/s)

= 0:006=402 � 10� 60 ' 0:002 for glass (� = 0:006 cm2/s)

Recall in the notes we made the �rst term approximation for t � 1=�2 ' 0:1, and hence

both these values fall under that. To see how the number of terms retained a¤ects the sum,

we compute u (1=2; t) from (13) for various numbers of terms. For iron (t = t10 = 0:056), we

obtain

u

�
1

2
; t10

�
' 36: 631 (1 term)

' 36: 484 (2 terms) (14)

' 36: 484 (3 or more terms)
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In this case, the �rst term u1 (1=2; t10) does a good job of approximating the series for

u (1=2; t10). For glass (t = t10 = 0:002),

u

�
1

2
; t10

�
' 62: 4 (1 term)

' 44:7 (2 terms)

' 52:4 (3 terms)

' 49:0 (4 terms)

' 50:4 (5 terms)

' 49:9 (6 terms)

' 50:04 (7 terms)

In this case, the convergence is much slower and the �rst term u1 (1=2; t10) is a poor estimate

of u (1=2; t10).

The upper bound on the error was discussed in §6.2. The approximate error we derived

in class is, since the series for u (1=2; t) only has odd terms,����u�12 ; t
�
� u1

�
1

2
; t

����� � Be�3�
2t

1� e�2�2t (15)

where B is the upper bound for B2k�1 for all k = 2; 3; :::. In the notes, we wrote

jBnj � 2
Z 1

0

jf (x)j dx = 2 � 1
2
� 100 = 100

However, we can obtain a better approximation since we have the formula for Bn

jB2k�1j =
���� 200

(2k � 1)�

���� � 200

3�
k = 2; 3; :::

Therefore, B = 200= (3�) and from (15),����u�12 ; t
�
� u1

�
1

2
; t

����� � 200

3�

e�3�
2t

1� e�2�2t < 6:1 for t � t10 = 0:056:

This error bound is still not very good - in (14) the error between u (1=2; t10) (for iron,

t10 = 0:056) and the �rst term u1 (1=2; t10) is roughly 0:15, much less than 6:1. I have now

added a much better estimate to §6.2. It turns out that, since the series u (1=2; t) only has

odd terms, ����u�12 ; t
�
� u1

�
1

2
; t

����� � Be�9�
2t

1� e�6�2t =
200

3�

e�9�
2t

1� e�6�2t

Now the error for t = t10 = 0:056 is 0:152, which is more in line with (14).
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5 Problem 7

Consider the heat �ow problem with dimensionless position and time,

@u

@t
=

@2u

@x2
; 0 < x < 1; t > 0 (16)

u (0; t) = 0 =
@u

@x
(1; t) ; t > 0

u (x; 0) = f (x) 0 < x < 1:

Solution:
(a) The physical signi�cance of the condition ux (1; t) = 0 is that the end of the rod at

x = 1 is insulated, i.e. the heat �ux (proportional to ux by Fourier�s law) is zero at x = 1.

(b) Showing that �u (t) =
R 1
0
u2 (x; t) dx is non-increasing in time follows from the deriva-

tion in §8.1 of the lecture notes and noting that uux = 0 at x = 0; 1 since u = 0 at x = 0

and ux = 0 at x = 1.

(c) Proving that (16) has at most one solution follows the derivation in class. Take
two solutions u1, u2 of (16) and de�ne v (x; t) = u1 � u2. Then show that the function

�v (t) =
R 1
0
v2 (x; t) dx is non-increasing as in part (b).

(d) To �nd a series solution for f (x) = u0, u0 a constant, we use separation of variables,

u (x; t) = X (x)T (t) (17)

The PDE in (16) gives the usual

X 00

X
=
T 0

T
= ��

where � is constant since the left hand side is a function of x only and the middle is a

function of t only. Substituting (17) into the BCs in (16) gives

X (0) =
dX

dx
(1) = 0

The Sturm-Liouville boundary value problem for X (x) is thus

X 00 + �X = 0; X (0) =
dX

dx
(1) = 0 (18)

Let us try � < 0. Then the solutions are

X (x) = c1e
�
p
j�jx + c2e

p
j�jx
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and imposing the BCs gives c1 = c2 = 0, i.e. X (x) must be the trivial solution. For � = 0,

X (x) = c1x + c2 and, again, imposing the BCs gives c1 = c2 = 0 and X (x) is the trivial

solution. Thus, in order to have a nontrivial solution, � must be taken positive. In this case,

X = c1 sin
p
�x+ c2 cos

p
�x

The BC X (0) = 0 implies c2 = 0. The other BC implies

0 =
dX

dx
(1) = c1

p
� cos

p
�

For a non-trivial solution, c1 must be nonzero. Since � > 0 then we must have cos
p
� = 0,

which implies the eigenvalues are

�n =
(2n� 1)2

4
�2; n = 1; 2; 3; :::

and the eigenfunctions are

Xn (x) = sin

�
(2n� 1)

2
�x

�
For each n, the solution for T (t) is Tn (t) = e��nt. Hence the series solution for u (x; t) is

u (x; t) =
1X
n=1

Bn sin

�
(2n� 1)

2
�x

�
exp

 
�(2n� 1)

2

4
�2t

!
(19)

At t = 0,

f (x) = u (x; 0) =

1X
n=1

Bn sin

�
(2n� 1)

2
�x

�
(20)

The orthogonality conditions are found using the identity

2 sin

�
(2n� 1)

2
�x

�
sin

�
(2m� 1)

2
�x

�
= cos ((m� n)�x)� cos ((1�m� n)�x)

Note also that for m;n = 1; 2; 3:::, we haveZ 1

0

cos ((m� n)�x) dx =
(
1 m = n

0 m 6= nZ 1

0

cos ((1�m� n)�x) dx = 0

The last integral follows since 1�m�n cannot be zero for any positive integers m, n. Thus,
the orthogonality conditions areZ 1

0

sin

�
(2n� 1)

2
�x

�
sin

�
(2m� 1)

2
�x

�
dx =

(
1=2 m = n

0 m 6= n
(21)
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Multiplying each side of (20) by sin ((2m� 1)�x=2), integrating from x = 0 to 1, and

applying the orthogonality condition (21) gives

Bn = 2

Z 1

0

sin

�
(2n� 1)

2
�x

�
f (x) dx (22)

Substituting f (x) = u0 into (22) gives

Bn = 2u0

Z 1

0

sin

�
(2n� 1)

2
�x

�
dx =

4u0
(2n� 1)�

�
1� cos

�
(2n� 1)

2
�

��
=

4u0
(2n� 1)�

(23)

Thus, the series solution is

u (x; t) =
4u0
�

1X
n=1

1

(2n� 1) sin
�
(2n� 1)

2
�x

�
exp

 
�(2n� 1)

2

4
�2t

!
:

An approximate solution valid for large times is the �rst term,

u (x; t) � u1 (x; t) =
4u0
�
sin
��x
2

�
exp

�
��

2t

4

�
:

Similar upper bounds on error can be derived as in the notes. Temperature pro�les (u vs.

x) are plotted below for di¤erent times.

6 Problem 8

Suppose a chemical is dissolved in water, in some long thin reaction container and let �

(moles/cm3) indicate its concentration. Fick�s Law in chemistry states that the rate of

di¤usion of a solute is proportional to the negative gradient of the solute concentration.

Assume that the chemical is created, due to a chemical reaction, at a rate g (x; t) (moles/cm3

sec).

(a) Derive a PDE describing the distribution of �. Formulate appropriate BCs and IC
and state all assumptions.

(b) Show that the solution to the initial boundary value problem derived in (a) is unique.
Solution: The derivation is analogous to that of the Heat Equation with a source. Mass

conservation of the reactant is used in place of energy conservation, and Fick�s Law is used

in place of Fourier�s Law.

Consider a thin segment from x to x + �x of the reaction container, of cross-sectional

area A. Let � (x; t) be the concentration of the reactant at position x along the container
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Figure 4: Temperature pro�les u (x; t0) at various times t0 = 0:001, 0:01, 0:1 and 0:7 (from

left to right). Dashed line indicates the initial condition. The x-axis is the limit of the

solution as t!1.
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and at time t. Analogous to the derivation of the heat equation, conservation of mass gives

change of

concentration �

in segment in time �t

=
reactant in from

left boundary
� reactant out from

right boundary
+

reactant

generated

in segment

: (24)

The last term in the mass balance equation is just gA�x�t. Fick�s Law states that the

reactant in and out from the left and right boundaries is, respectively,

�tA

�
�F0

@�

@x

�
x

; ��tA
�
�F0

@�

@x

�
x+�x

where F0 is the chemical di¤usivity. Therefore, (24) becomes

A�x� (x; t+�t)� A�x� (x; t) = �tA
�
�F0

@�

@x

�
x

��tA
�
�F0

@�

@x

�
x+�x

+ gA�x�t

Dividing by A�x�t and rearranging yields

� (x; t+�t)� � (x; t)
�t

= F0

 �
@�
@x

�
x+�x

�
�
@�
@x

�
x

�x

!
+ g:

Taking the limit �t;�x! 0 gives the chemical di¤usion equation with a source,

@�

@t
= F0

@2�

@x2
+ g (25)

We assume the concentration � is smooth.

For BCs, the ends of the reaction container are closed, so that �x = 0 at x = 0; l (Type II

homogeneous BCs). Alternatively, we could be supplying or removing reactant at the ends,

keeping the concentration �xed: � = �0 at x = 0; l (Type I inhomogeneous BCs). The IC

is � (x; 0) = f (x) where f (x) is the initial distribution of reactant. If the container is well

mixed, then f (x) = u0. If there is no reactant initially in the container, then � (x; 0) = 0.

Whatever the IC, we assume it is smooth.

To show uniqueness, we note that given two solutions u1, u2, we de�ne the di¤erence

v (x; t) = u1 � u2, which satis�es the homogeneous di¤usion equation

�t = F0�xx

Similarly, for either Type II homogeneous or Type I inhomogeneous BCs on u1 and u2, the

BCs on v (x; t) are homogeneous Type I or II. In either case, we de�ne the mean concentration

as

�v (t) =

Z 1

0

v2 (x; t) dx

and follow the derivation in the lecture notes.
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