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1 Problem 1

(i) Show that
x

u(z,t) = ugerf (—) , t >0, r € R,

2Vt

where ug is a constant, is a solution of the heat equation
Uy = Ugyg,

and satisfies the initial condition

ug, if x>0,
u(z,0)=f(x) = 0, ifx=0,
—ug, ifx<O0

in the sense that
lim w(x,t) = f(x).

t—0t

Solution: We show by direct substitution that u (z,t) is the solution to the heat

equation and initial condition. First, note that the error function is defined by

2 T e
erf (x) = ﬁ/ e ¥ ds
0

(4)



Thus by the chain rule,

2 x? T 1 UpX x?
RV <_E) 213/2 <_§) ~ o e P <_E)
0? 0 2 1 x?
v = g (vt (57)) = 7 (w2 ()
2 x? 1 2x
R
UL x?
- e (_E)

= ut

Thus Eq. (1) for u (x,t) satisfies the Heat Equation (2).
We now show that (1) satisfies the IC (3). Note that

x > 0: tl_lgiu (x,t) = ugerf (tl_lf(%r W) = ugerf (c0) =

z = 0:limu(0,t)=1lim0=0

t—0t t—0t

r < 0: tl_lgl u (x,t) = uperf (}i{% W) = ugperf (—o0) = —uy
Thus, lim; g+ u (z,t) = f ().

(ii) Give a physical interpretation of the solution. Sketch the curves u (z,t) =
const in the zt-plane.

Solution: wu (z,t) is the temperature in an infinite rod with thermal diffusivity 1
and initial temperature ug for x > 0 and —ug for x < 0. You could also think of this

as two infinite rods put together, with the temperature at = 0 held at 0. The level

u(x,t) = ugerf (i) = const
) — o 2\/% -

curves are given by

and hence

=const =— t=cx’

x
20/
These are parabolas pointing upward, and are plotted in Figure 1.

(iii) Derive the solution (i) from the general solution we derived in class in terms of
the heat kernel K (s,x,t), using the initial temperature u (z,0) = f (). NOTE: All
that is required is a change of variable in the integral, and then writing the integral
in terms of the error function erf. Also, f (x) does not decay as x — oo, but it turns

out this requirement can be relaxed as long as the integrals exist.



Figure 1: Level curves of u(z,t) for question 1(ii).

Solution: In class, we derived the solution of the heat equation with general

initial condition f (x),

_[* S (z —5)°
u(x,t)—/_oo\/mexp <_T<;t> ds

Substituting f (s) from (3) gives

0 2 00 2
Uo (x —s) Up (z —s)
t) = — - |d ———|d
u (@) VArkt /_Oo P < 4kt > st VAarkt /0 P < 4kt °

Making the change of variable

s—x
o =
V4kt
in the integrals gives
—r/\/m 0o
u(z,t) = —ul—(/)Q/ e da + ul—%/ e ds
m —00 m —x/\/m

0 o)
/ e~ ds + / e_o‘gds)
—x/\/m 0

2U0 0 —o2
= m e dS
—:c/\/m
= / e ds (5)
0

u _
0 r1/2

T1/2

3



since

0 2 *° 2
/ e “da = / e “ds.
—0o0 0

Substituting the definition of the error function (4) into (5) and setting x = 1 gives

w (z,t) = ugerf <2i\/g)

as required.

2 Problem 2

(i) Find the temperature u (z,t) of a semi-infinite rod (z > 0), whose end (z = 0) is

kept at a temperature of zero, and with an initial hot-spot, u (z,0) = f (x), where

F o) = { Ug, if x € (xg, 1) (6)

0, ifzel0,29)U(x1,00)

with zg, 21 constants, 0 < xy < 7. Sketch the temperature profiles ¢t = const (i.e.,
u(z,tp) in the ua-plane for various fixed times ty), x = const (i.e., u(zo,t) in the
ut-plane for various fixed x() and the level curves u (z,t) = const in the xt-plane. See
note below.

(ii) Repeat (i) with the end of the rod (x = 0) insulated. See note below.

(iii) Referring to (ii), show that the temperature of the insulated end is a maximum
at time

2 2
Ty — &
t 1 0

4k (log x1 — log z¢)
where « is the thermal diffusivity.

NOTE: in both (i) and (ii), just use the general solution we derived in class with
the heat kernel, by suitably extending f (z) to the whole real line (i.e. odd extension
or even extension - see class notes). The integrals in the solution can then be expressed
as the sum of four terms involving error functions erf.

Solution (i): In class, we derived that solution to the heat equation on a semi-

infinite rod (x > 0) whose end is kept at zero is

u(x,t) = /_Z \/%exp (—%) ds (7)

where f (s) is the odd extension of f (s),

i f(s), s>0
f(s)= 0, 5= (8)
—f(=s), s<0
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Substituting (8) into (7) gives

[ f(=s) (z = s)* > f(s) (z = s)*
u(x,t)——/_oomexp<— yp >d8+/0 \/meXp<_T/<at>d$

Substituting for f (s) from (6) gives

U o (z —s)° U /:”1 (z —s)°
u(x, t) = — exp [ — ds + exp [ — ds
(z.1) Vdrkt /_gg1 P < 4kt VATEL J P Akt

Making the change of variable

S—x
a =
V4arkt
gives
—zg—=x ] —T
0 Vakt .2 uo Vart _ 2
u(x,t) = —\/—,/ eo‘da—l—T/ e da
w1z T Jzo—Z
Vakt VAakt
~int

zQ g

0 0
’LLO 2 VAaK 2 2 Vakt 2
= — |- e “da— e “da+ e “da+ e “da
s —T1—x 0 To—x 0

4kt

T1+T otz To—T T]—T
Ug Vast 9 Vast 9 Vast 9 Vast 9
= — —/ eo‘doz—i-/ eada—/ e “da+ e~ " da
ﬁ 0 0 0 0

Substituting the definition of the error function (4) gives

e (o () o (52) ot (352) o (252)

The temperature profiles and the level curves are plotted in Figures 2 to 5.

N
X
o+

Solution (ii): In class, we derived that solution to the heat equation on a semi-

infinite rod (x > 0) whose end is insulated,

oo g AY”
u(x,t) = /_ % exp <_(x4m;5‘) ) ds 9)
where f (s) is the odd extension of f (s),

f<s>={ fe), s>0 (10)

f(=s), s<0

Substituting (10) into (9) gives

_[? f(=s) (z—s)° > f(s) (z —s)°
u(a:,t)—/_oo\/mexp<— ype )ds—i—/o Wexp(— ypm )ds
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Figure 2: u(z,ty) curves for question 2(i). Numbers
to.

adjacent to curves indicate time
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Figure 3: w(zo,t) curves for question 2(i).

position x.

Numbers adjacent to curves indicate
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Figure 4: Level curves of u(x, t) for question 2(i). Numbers adjacent to curves indicate

value of v on level curve.

u(x,t)/u0

Figure 5: 3D plot of solution u(z,t) to question 2(i).
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Figure 6: u(x,to) curves for question 2(ii). Numbers adjacent to curves indicate time

to.

Substituting for

u(z,t) =

2V 47m

f (s) from (6) gives

exp (—7@ —9)

d
4kt s+

N——

2V 47m

Making the change of variable

gives
u(z,t) = %
= 7

Substituting the

u(x,t):%

S —X
o =
V4kt
Vst 9 Uo st 2
e “da+ 7 e “da
—x]—x s To—x
VAakt VAakt
0 —0" ¥ 0
2 Vst
(/ “da +/ **do +/
—x]—x C”O r
Vart

(x — s)?
eXp Tm ds

CL‘1+IE zo+z zo—x
Vit Vint VIRt o VInt o
( o‘doz—/ o‘doz—/ O‘doz—l—/ 6adoz>
0

definition of the error function (4) gives

(erf <m) erf (m) erf (u
VAarxt VAakt vVAarxt

A

The temperature profiles and the level curves are plotted in Figures 6 to 9.



Figure 7: wu(zg,t) curves for question 2(ii). Numbers adjacent to curves indicate

position xg.
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Figure 8: Level curves of u(z,t) for question 2(ii).

indicate value of v on level curve.

Numbers adjacent to curves



u(x,t)/u0

Figure 9: 3D plot of solution u(zx,t) to question 2(ii).

Solution (iii): The temperature at the insulated end of the solution in problem

)

(ii) is
w(0,1) = ug (erf <\/%

The temperature is maximum when u, (0,%) = 0,
2 2
_ _ U BN _ Mo
0=u:(0,t) = WL (wl exp ( 4/<;t> To exp ( 4/%))
Rearranging gives
2?2 — 23
xT1 = Tgex
1 0 €XP At
Taking the log of both sides and solving for ¢ yields
i —ay 2?2 — 2}
4k (log (x1) — log (x0))

t =
4k log (x1/z0)

3 Problem 3

Show that
2’LLO ( )
u(z,y) = — arctan | —
Q Y

where ug is constant, is a solution of Laplace’s equation
Pu  0u
— + = =0,
ox?  Oy?

10



and satisfies the boundary condition

lim u (z,y) = f (z)

y—0+

Give a physical interpretation of the solution (i.e. how does this relate to what
Heat Problem?). Sketch the isothermal curves (level curves) u (z,y) = const in the

zry-plane. Note that in polar coordinates,

6 = arctan (E)
)

where 6 is the angle measured from the y-axis (f = 0 is the y-axis) and increasing
clockwise.

Solution: We can show u (z,y) is a solution of Laplace’s equation directly,

ou  2ug 1 1 0*u  2ug 2xy
or w1+ (afyly 022w (2 +a2)
Ju  2ug 1 - d*u _ 2ug 2wy
dy o T +@y) T (P
Thus
Gu Ou_ 2w 2wy 2w 2wy
Ox? Oy T+’ T (g2 +a?)

and hence (11) is a solution of Laplace’s equation. The limit y — 07 of (11) is

z > 0: lim wu(z,y) = = Jim arctan <§) = ﬂaurctam(OO) = STy,

y—0t T y—0t Y T T 5 N
2u
z = 0:lim u(0,y) = = lim 0 =0
y—0~t ™ y—0t
2u T 2u 2u
z < 0:lim u(z,y) == lim arctan <—) = ZDarctan (—o0) = et — g
y—0t T y—0+ Y s T 2

Thus
lim u (z,y) = f(x)

y—0t
where f (x) is given in (3) in problem 1.
We can also show that (11) is a solution of Laplace’s equation by substituting

f (s) into the general solution we derived in class using the Fourier Transform,
1 [ 2y
u(z,y) = ) ——3—

2 J o

- (o [ )
S O B )



Note that

ds

[

x)2 + 72

Thus

u(z,y)

as required.

Physical interpretation: the solution u (x,y) is the steady-state temperature of the
upper half plane with boundary condition u (z,0) = f (x).
where 6 is the angle measured from the y-axis (f = 0 is the y-axis) and increasing

clockwise, we have

The level curves u = const are thus lines through the origin, 8 = const, and are

sketched in Figure 10.

b—x

/b_:” do 1 o
——— = |—arctan [ —
ez 2+ Y* |y Y) | oas
1 (b—x) 1 (a—x)
—arctan [ —— | — — arctan
Yy Yy Yy Yy
(5) = o (=57))
— | + —arctan | ———
Yy Yy Yy
(557) - (5))
— —arctan | —
Yy Yy Yy
L7
2

o (2 arctan <§) —
T Y

2U0

oon )

—— arctan

0
u (z, y) = Uoﬂ—/2

12

Since § = arctan (z/y)
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Figure 10: Level curves

of u(z,y) for question 3.
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