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1 Problem 1

(i) Generalize the derivation of the wave equation where the string is subject to a damping

force �b@u=@t per unit length to obtain

@2u

@t2
= c2

@2u

@x2
� 2k@u

@t
(1)

All variables will be left in dimensional form in this problem to make things a little di¤erent.

How is the constant k related to b? What are the dimensions of b and k? The constant 2 is

included for later convenience.

Solution: The derivation follows that in Section 1 of WaveEqnI.pdf. Consider an element
of the string between x and x+�x. Let T (x; t) be tension and � (x; t) be the angle wrt the

horizontal x-axis. Note that

tan � (x; t) = slope of tangent at (x; t) in ux-plane =
@u

@x
(x; t) : (2)

Newton�s Second Law (F = ma) states that

F = (��x)
@2u

@t2
(3)

where � is the linear density of the string (ML�1) and �x is the length of the segment. The

force F comes from the tension in the spring and also the damping force (we ignore any

external forces such as gravity). The damping force acts in the opposite direction to the

motion. Recall our assumptions on the string. We assumed the displacements of the string

are su¢ ciently small so that each point on the string moves vertically. Thus the damping
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force also acts vertically in the opposite direction to the motion. Balancing the forces in the

horizontal direction gives

T (x+�x; t) cos � (x+�x; t) = T (x; t) cos � (x; t) = � = const (4)

where � is the constant horizontal tension. Balancing the forces in the vertical direction

yields

F = T (x+�x; t) sin � (x+�x; t)� T (x; t) sin � (x; t)� b@u
@t
�x

= T (x+�x; t) cos � (x+�x; t) tan � (x+�x; t)� T (x; t) cos � (x; t) tan � (x; t)� b@u
@t
�x(5)

Substituting (4) and (2) into (5) yields

F = � (tan � (x+�x; t)� tan � (x; t))� b@u
@t
�x

= �

�
@u

@x
(x+�x; t)� @u

@x
(x; t)

�
� b@u

@t
�x: (6)

Substituting F from (3) into Eq. (6) and dividing by �x gives

�
@2u

@t2
(�; t) = �

@u
@x
(x+�x; t)� @u

@x
(x; t)

�x
� b@u

@t

for � 2 [x; x+�x]. Dividing by � and letting �x! 0 gives the 1-D Wave Equation

@2u

@t2
= c2

@2u

@x2
� 2k@u

@t
; c2 =

�

�
> 0; k =

b

2�
: (7)

Note that c has units [c] =
h
Force
Density

i1=2
= LT�1 of speed, b has units [b] =

h
force

distance � speed

i
=

MLT�2

L2T�1 =ML
�1T�1 and k has units [k] = [b] = [�] = ML�1T�1

ML�1 = T�1. Thus k is proportional

to a frequency (i.e. has units of 1/time or Hz).

(ii) Use separation of variables to �nd the normal modes of the damped Wave Equation

(1) subject to the BCs

u (0; t) = 0 = u (l; t) (8)

Impose a restriction on the parameters c, l, k which will guarantee that all solutions are

oscillatory in time. You may assume that the eigenvalues and eigenfunctions are

�n =
n2�2

l2
; Xn (x) = sin

n�x

l
; n = 1; 2; 3:::

Solution: Separating variables as

u (x; t) = X (x)T (t) ;

2



substituting into the PDE (1) and dividing by c2X (x)T (t) gives

1

c2
T 00

T
+
2k

c2
T 0

T
=
X 00

X
= �� (9)

From the BCs (8),

X (0) = X (l) = 0

since T (t) cannot be zero for all time to obtain a non-trivial solution. The Sturm-Liouville

problem for X (x) is, from (9),

X 00 + �X = 0; X (0) = X (l) = 0:

The non-trivial solutions are the eigenvalues and eigenfunctions

�n =
n2�2

l2
; Xn (x) = sin

n�x

l
: (10)

The solutions for T (t) are, from (9),

T 00 + 2kT 0 + �c2T = 0:

From (9), the values of � for T (t) are the same as those for X (x). From (10), the only

values of � that lead to non-trivial solutions are � = �n. Thus for each �n, we need to solve

for the corresponding T (t) = Tn (t) to �nd the normal mode un (x; t) = Xn (x)Tn (t). To

�nd the solutions for T (t), we substitute T = ert,

r2 + 2kr + �c2 = 0:

Solving the quadratic equation for r gives

r = �k �
p
k2 � c2� (11)

The solutions Tn (t) corresponding to the eigenvalues � = �n are all oscillatory if r has a

complex part, i.e. if k2 � c2�n < 0 for all n, or

k2 < min
n�1

c2�n = min
n�1

c2n2�2

l2
=
c2�2

l2
:

Taking the square root of both sides and rearranging gives the criterion that all the Tn (t)

be oscillatory,
c�

kl
> 1: (12)
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The solution Tn (t) is a linear combination of ert where r is given in (11) with � = �n,

Tn (t) = c1e
(�k+

p
k2�c2�n)t + c2e

(�k�
p
k2�c2�n)t

Under condition (12),
p
k2 � c2�n = i

p
c2�n � k2, where c2�n � k2 > 0. Thus

Tn (t) = e�kt
�
cn1e

i
p
c2�n�k2t + cn2e

�i
p
c2�n�k2t

�
= e�kt

�
(cn1 + cn2) cos

�p
c2�n � k2t

�
+ i (cn1 � cn2) sin

�p
c2�n � k2t

��
= e�kt

�
�n cos

�p
c2�n � k2t

�
+ �n sin

�p
c2�n � k2t

��
where we have rewritten the constants of integration as �n = cn1 + cn2, �n = i (cn1 � cn2).
The corresponding normal modes are

un (x; t) = Xn (x)Tn (t) = e
�kt
�
�n cos

�p
c2�n � k2t

�
+ �n sin

�p
c2�n � k2t

��
sin
�n�x
l

�
(13)

where �n = n2�2=l2. Notice that with damping (k > 0), the normal mode decays with time

and oscillates (c� > kl) as it decays.

(iii) Express the frequency efn of the oscillatory part of the n�th normal mode in terms
of the frequency of the undamped mode fn = nc= (2l). What di¤erence does the damping

make?

Solution: The frequency efn of the normal mode un (x; t), given in (13), is
efn = 1

2�

p
c2�n � k2 =

1

2�

r
c2n2�2

l2
� k2 = cn

2l

s
1�

�
lk

cn�

�2
= fn

s
1�

�
lk

cn�

�2
(14)

As the damping (k > 0) increases, the frequencies of the normal modes decrease.

(iv) Show that the solution of the damped wave equation (1) subject to the BCs (8) and

the initial condition

u (x; 0) = f (x) ;
@u

@t
(x; 0) = 0 (15)

is given by

u (x; t) = e�kt
1X
n=1

�
�n cos

�
2� efnt�+ �n sin�2� efnt�� sin�n�xl �

Express the constants �n, �n in terms of the Fourier Sine coe¢ cients Bn of f .

Solution: Summing the normal modes gives the solution

u (x; t) =
1X
n=1

un (x; t) = e
�kt

1X
n=1

�
�n cos

�
2� efnt�+ �n sin�2� efnt�� sin�n�xl � (16)
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where the frequencies efn are given in (14) and �n, �n are to be determined from the initial

conditions on u (x; t). Imposing the ICs (15) gives

f (x) = u (x; 0) =

1X
n=1

�n sin
�n�x
l

�
(17)

0 = ut (x; 0) =
1X
n=1

�
�k�n + 2� efn�n� sin�n�xl � (18)

Eq. (18) implies

�k�n + 2� efn�n = 0 (19)

for all n. Multiplying both sides of (17) by sinm�x, integrating from x = 0 to l, and using

the orthogonality properties of sinm�x, gives

�n =
2

l

Z l

0

f (x) sin
�n�x
l

�
dx: (20)

From (19),

�n =
k�n

2� efn (21)

From (16), (20) and (21), the complete solution is

u (x; t) = e�kt
1X
n=1

�n

�
cos
�
2� efnt�+ k

2� efn sin
�
2� efnt�� sin�n�x

l

�
(22)

2 Problem 2

Prove that if a vibrating string is damped, i.e. subject to the PDE in Problem 1(i), then the

energy E (t) is monotone decreasing. You may use the formula we derived in lecture,

E (t) =
�

2

Z l

0

�
u2t + c

2u2x
�
dx (23)

Also, you may assume Homogeneous Type I BCs for the displacement u (x; t).

Solution: The formula derived in lecture is valid for a system with damping, since the

kinetic and potential energies of the string only depend on the displacement u (x; t) and its

derivatives. Di¤erentiating (23) gives

dE

dt
= �

Z l

0

�
ututt + c

2uxuxt
�
dx
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Replacing utt using the PDE (1) gives

dE

dt
= �

Z l

0

�
c2utuxx � 2ku2t + c2uxuxt

�
dx

= �

Z l

0

�
c2 (utux)x � 2ku2t

�
dx

= �c2 [utux]
l
x=0 � 2k�

Z l

0

u2tdx (24)

Di¤erentiating the BCs in time t gives

d

dt
u (0; t) = 0;

d

dt
u (l; t) = 0

Therefore, (24) becomes
dE

dt
= �2k�

Z l

0

u2tdx (25)

Thus dE=dt � 0 which shows that the energy E (t) is monotone non-increasing.
We want to show little more, namely that E (t) is monotone decreasing for t > 0. We

must simply show that there is no time interval 0 < t1 � t � t2 in which dE=dt = 0.

Suppose, for the sake of contradiction, there was a time interval 0 < t1 � t � t2 in which

dE=dt = 0. Then (25) implies u2t must vanish identically for all 0 � x � l and for each time
in this interval,

ut (x; t) = 0; t 2 [t1; t2] ; x 2 [0; l]

Di¤erentiating in time gives

utt (x; t) = 0; t 2 [t1; t2] ; x 2 [0; l]

Substituting for utt from the Damped Wave Equation (1), we have

uxx (x; t) = 0; t 2 [t1; t2] ; x 2 [0; l]

Integrating in x and applying the BCs (8) gives

u (x; t) = 0; t 2 [t1; t2] ; x 2 [0; l]

Substituting the solution (22) from Problem 1 yields

e�kt
1X
n=1

�n

�
cos
�
2� efnt�+ k

2� efn sin
�
2� efnt�� sin�n�x

l

�
; t 2 [t1; t2] ; x 2 [0; l]
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From the orthogonality of sin (n�x=l), this implies that for all n,

e�kt�n

�
cos
�
2� efnt�+ k

2� efn sin
�
2� efnt�� = 0; t 2 [t1; t2] (26)

We assume that f (x) 6= 0, for otherwise the solution is trivial u (x; t) = 0. Thus from Eq.

(20), there exists an n1 such that

�n1 =
2

l

Z l

0

f (x) sin
�n1�x

l

�
dx 6= 0:

For this n1, �n1 6= 0 and (26) implies

cos
�
2� efnt�+ k

2� efn sin
�
2� efnt� = 0

Rearranging yields

tan
�
2� efnt� = �2� efn

k
; t 2 [t1; t2]

This equation makes no sense because the l.h.s. varies with time t 2 [t1; t2], while the r.h.s. is
constant. This is a contradiction, and hence there can be no time interval where dE=dt = 0,

unless the solution u (x; t) is trivial, i.e. identically zero.

Therefore, for non-trivial solutions u (x; t) (given by functions f (x) that are not identi-

cally zero), the energy is monotonic decreasing, dE=dt < 0 for all time t > 0.

3 Problem 3

(i) Suppose that an �in�nite string�has an initial displacement

u (x; 0) = f (x) =

8><>:
x+ 1; �1 � x � 0
�x+ 1; 0 � x � 1
0; jxj > 1

and zero initial velocity ut (x; 0) = 0. Write down the solution of the wave equation

utt = uxx

with ICs u (x; 0) = f (x) and ut (x; 0) = 0 using D�Alembert�s formula. Illustrate the nature

of the solution by sketching the ux-pro�les z = u (x; t) of the string for t = 0; 1=2; 1; 3=2.

Solution: Step 1. Since ut (x; 0) = 0, D�Alembert�s solution is

u (x; t) =
f (x� t) + f (x+ t)

2
: (27)
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Notice that df=dx is not continuous, but it turns out that the smoothness criterion can be

relaxed. f (x) is piecewise smooth. Lastly, we can rewrite f (x) as

f (x) =

(
1� jxj ; jxj � 1
0; jxj > 1

(28)

Step 2. Identify the regions. The function f (x) is a triangle with vertices at x =

�1; 0; 1. It is zero for jxj > 1. Thus, the regions of interest are found by plotting the four
characteristics x � t = �1 (see plot above). The regions are identi�ed in the plot, and are
given mathematically by

R1 = f(x; t) : �1 � x� t � 1 and � 1 � x+ t � 1g
R2 = f(x; t) : �1 � x� t � 1 and x+ t � 1g
R3 = f(x; t) : x� t � �1 and � 1 � x+ t � 1g (29)

R4 = f(x; t) : x� t � �1 and x+ t � 1g
R5 = f(x; t) : x+ t � �1g ;
R6 = f(x; t) : x� t � 1g
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The regions determine where x� t and x+ t are relative to �1, which tells us what part of
the case function f (x) should be used.

Step 3. Consider the solution in each region. In R1, combining the inequalities gives

jx� tj � 1 and hence from (28),

f (x� t) = 1� jx� tj
f (x+ t) = 1� jx+ tj

thus (27) becomes

u (x; t) =
f (x� t) + f (x+ t)

2
= 1� 1

2
(jx� tj+ jx+ tj)

In region R2,

f (x+ t) = 0

f (x� t) = 1� jx� tj

and hence (27) becomes

u (x; t) =
f (x� t)

2
=
1

2
� 1
2
jx� tj

In region R3,

f (x+ t) = 1� jx+ tj
f (x� t) = 0

and hence (27) becomes

u (x; t) =
f (x+ t)

2
=
1

2
� 1
2
jx+ tj

In regions R4, R5 and R6, f (x+ t) = 0 = f (x� t) and hence u = 0. To summarize,

u (x; t) =

8>>><>>>:
1� 1

2
(jx� tj+ jx+ tj) ; (x; t) 2 R1
1
2
� 1

2
jx� tj ; (x; t) 2 R2

1
2
� 1

2
jx+ tj ; (x; t) 2 R3
0; (x; t) 2 R4; R5; R6

(30)

Step 4. For each speci�c time t = t0, write the x-intervals corresponding to the sets Rn
(i.e. the intersection of the set Rn with ft = t0g, or in the �gure above, where the line t = t0
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intersects the region Rn). As a check, we note that at t = 0,

R1 \ ft = 0g = f�1 � x � 1g = fjxj � 1g
R2 \ ft = 0g = fx = 1g
R3 \ ft = 0g = fx = �1g (31)

R4 \ ft = 0g = ?

R5 \ ft = 0g = fx � �1g ;
R6 \ ft = 0g = fx � 1g

and (30) becomes

u (x; 0) =

(
1� jxj ; jxj � 1
0; jxj > 1

= f (x)

At t = 1=2,

R1 \
�
t =

1

2

�
=

�
�1
2
� x � 3

2
and � 3

2
� x � 1

2

�
=

�
�1
2
� x � 1

2

�
R2 \

�
t =

1

2

�
=

�
�1
2
� x � 3

2
and x � 1

2

�
=

�
1

2
� x � 3

2

�
R3 \

�
t =

1

2

�
=

�
x � �1

2
and � 3

2
� x � 1

2

�
=

�
�3
2
� x � �1

2

�
(32)

R4 \
�
t =

1

2

�
=

�
x � �1

2
and x � 1

2

�
= ?

R5 \
�
t =

1

2

�
=

�
x � �3

2

�
;

R6 \
�
t =

1

2

�
=

�
x � 3

2

�
and (30) becomes

u

�
x;
1

2

�
=

8>>><>>>:
1� 1

2

���x� 1
2

��+ ��x+ 1
2

��� ; �1
2
� x � 1

2
1
2
� 1

2

��x� 1
2

�� ; 1
2
� x � 3

2
1
2
� 1

2

��x+ 1
2

�� ; �3
2
� x � �1

2

0; jxj � 3
2

=

8>>><>>>:
1
2
; �1

2
� x � 1

2
3
4
� 1

2
x; 1

2
� x � 3

2
3
4
+ 1

2
x; �3

2
� x � �1

2

0; jxj � 3
2

10



At t = 1,

R1 \ ft = 1g = f0 � x � 2 and � 2 � x � 0g = fx = 0g
R2 \ ft = 1g = f0 � x � 2 and x � 0g = f0 � x � 2g
R3 \ ft = 1g = fx � 0 and � 2 � x � 0g = f�2 � x � 0g (33)

R4 \ ft = 1g = fx � 0 and x � 0g = fx = 0g
R5 \ ft = 1g = fx � �2g ;
R6 \ ft = 1g = fx � 2g

and (30) becomes

u (x; 1) =

8><>:
1
2
� 1

2
jx� 1j ; 0 � x � 2

1
2
� 1

2
jx+ 1j ; �2 � x � 0
0; jxj � 2

At t = 3=2,

R1 \
�
t =

3

2

�
=

�
1

2
� x � 5

2
and � 5

2
� x � �1

2

�
= ?

R2 \
�
t =

3

2

�
=

�
1

2
� x � 5

2
and x � �1

2

�
=

�
1

2
� x � 5

2

�
R3 \

�
t =

3

2

�
=

�
x � 1

2
and � 5

2
� x � �1

2

�
=

�
�5
2
� x � �1

2

�
(34)

R4 \
�
t =

3

2

�
=

�
x � 1

2
and x � �1

2

�
=

�
�1
2
� x � 1

2

�
R5 \

�
t =

3

2

�
=

�
x � �5

2

�
;

R6 \
�
t =

3

2

�
=

�
x � 5

2

�
and (30) becomes

u

�
x;
3

2

�
=

8>>><>>>:
1
2
� 1

2
jx� tj ; 1

2
� x � 5

2
1
2
� 1

2
jx+ tj ; �5

2
� x � �1

2

0; �1
2
� x � 1

2

0: jxj � 5=2
These are plotted below.

(ii) Repeat the procedure in (i) for a string that has zero initial displacement but is given

an initial velocity

ut (x; 0) = g (x) =

(
2; jxj � 1
0; jxj > 1
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Solution: Step 1. Since u (x; 0) = 0, D�Alembert�s solution is

u (x; t) =
1

2

Z x+t

x�t
g (s) ds:

Step 2. Regions. Since g (x) has the same form as f (x), namely it is a case function of

two cases, one for jxj � 1 and one for jxj > 1, the characteristic plot is the same as for (i)
and the regions Rn are also the same (see (29)).

Step 3. Calculate solution in each interval. The integral can be calculated in each region,

since each region tells us where x + t and x � t are with respect to �1. In region R1,
�1 � x� t � 1 so that

u (x; t) =
1

2

Z x+t

x�t
g (s) ds =

1

2

Z x+t

x�t
2ds = 2t
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In region R2, �1 � x� t � 1 and x+ t � 1 so that

u (x; t) =
1

2

Z x+t

x�t
g (s) ds

=
1

2

Z 1

x�t
g (s) ds+

1

2

Z x+t

1

g (s) ds

=
1

2

Z 1

x�t
2ds+

1

2

Z x+t

1

0ds

= 1� (x� t)

Similarly, in region R3,

u (x; t) =
1

2

Z �1

x�t
g (s) ds+

1

2

Z x+t

�1
g (s) ds =

1

2

Z x+t

�1
2ds = x+ t+ 1

In region R4,

u (x; t) =
1

2

Z �1

x�t
g (s) ds+

1

2

Z 1

�1
g (s) ds+

1

2

Z x+t

1

g (s) ds

=
1

2

Z 1

�1
2ds = 2
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In regions R5 and R6, u (x; t) = 0. To summarize,

u (x; t) =
1

2

Z x+t

x�t
g (s) ds =

8>>>>>><>>>>>>:

2t; (x; t) 2 R1
1� x+ t; (x; t) 2 R2
1 + x+ t; (x; t) 2 R3

2; (x; t) 2 R4
0; (x; t) 2 R5; R6

(35)

Step 4. For each speci�c time t = t0, write the x-intervals corresponding to the sets Rn
(i.e. the intersection of the set Rn with ft = t0g, or in the �gure above, where the line t = t0
intersects the region Rn). Since the characteristics are the same, the intervals for x are the

same for each time. As a check, we note that at t = 0, the x-intervals correponding to each

region are given by (31) and (35) becomes

u (x; 0) =
1

2

Z x

x

g (s) ds = 0 =

8>>>>>><>>>>>>:

0; jxj � 1
1� x; x = 1

1 + x; x = �1
2; ?
0; jxj � 1

= 0 = f (x)

so this checks! At t = 1=2, the regions Rn are given by (32) and (35) becomes

u

�
x;
1

2

�
=
1

2

Z x+1=2

x�1=2
g (s) ds =

8>>>>>><>>>>>>:

2� 1
2
; �1

2
� x � 1

2

1� x+ 1
2
; 1

2
� x � 3

2

1 + x+ 1
2
; �3

2
� x � �1

2

2; ?
0; jxj � 3

2

=

8>>><>>>:
1; �1

2
� x � 1

2
3
2
� x; 1

2
� x � 3

2
3
2
+ x; �3

2
� x � �1

2

0; jxj � 3
2

At t = 1, the regions Rn are given by (33) and (35) becomes

u (x; 1) =
1

2

Z x+1

x�1
g (s) ds =

8><>:
2� x; 0 � x � 2
2 + x; �2 � x � 0
0; jxj � 2

At t = 3=2, the regions Rn are given by (34) and (35) becomes

u

�
x;
3

2

�
=
1

2

Z x+3=2

x�3=2
g (s) ds =

8>>><>>>:
5
2
� x; 1

2
� x � 5

2
5
2
+ x; �5

2
� x � �1

2

2; �1
2
� x � 1

2

0; jxj � 5
2

These are plotted below.
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4 Problem 4

(i) For an in�nite string (i.e. we don�t worry about boundary conditions), what initial

conditions would give rise to a purely forward wave? Express your answer in terms of the

initial displacement u (x; 0) = f (x) and initial velocity ut (x; 0) = g (x) and their derivatives

f 0 (x), g0 (x). Interpret the result intuitively.

Solution: Recall in class that we write D�Alembert�s solution as

u (x; t) = P (x� t) +Q (x+ t) (36)

where

Q (x) =
1

2

�
f (x) +

Z x

0

g (s) ds+Q (0)� P (0)
�

(37)

P (x) =
1

2

�
f (x)�

Z x

0

g (s) ds�Q (0) + P (0)
�

(38)

To only have a forward wave, we must have

Q (x) = const = q1

Substituting (37) gives

Q (x) = q1 =
1

2

�
f (x) +

Z x

0

g (s) ds

�
Di¤erentiating in x gives

0 =
1

2

�
df

dx
+ g (x)

�
Thus

g (x) = � df
dx

(39)

Substituting (39) into (37) gives

Q (x) =
1

2
(f (0) +Q (0)� P (0))

and setting x = 0 yields f (0)� P (0) = Q (0). Substituting this and (39) into (38) gives

P (x) =
1

2
(2f (x)� f (0)�Q (0) + P (0)) = f (x)

and hence

u (x; t) = f (x� t) :
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The displacement u (x; t) only contains the forward wave! Intuitively, we have set the initial

velocity of the string in such a way, given by Eq. (39), as to cancel the backward wave.

(ii) Again for an in�nite string, suppose that u (x; 0) = f (x) and ut (x; 0) = g (x) are

zero for jxj > ". Prove that if t+ x > " and t� x > ", then the displacement u (x; t) of the
string is constant. Relate this constant to g (x).

Solution: D�Alembert�s solution for the wave equation is

u (x; t) =
1

2
(f (x� t) + f (x+ t)) + 1

2

Z x+t

x�t
g (s) ds

If x+t > " and t�x > ", then jx+ tj > " and jx� tj > ", so that f (x� t) = 0. Furthermore,
x� t < �", so that Z x+t

x�t
g (s) ds =

Z "

�"
g (s) ds =

Z 1

�1
g (s) ds = c"

Thus c" is just the area under the curve g (x), and

u (x; t) = c"; x+ t > "; t� x > ":
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