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1 The 1-D Heat Equation 

1.1 Physical derivation 

Reference: Guenther & Lee §1.3-1.4, Myint-U & Debnath §2.1 and §2.5 

[Sept. 8, 2006] 

In a metal rod with non-uniform temperature, heat (thermal energy) is transferred 

from regions of higher temperature to regions of lower temperature. Three physical 

principles are used here. 

1. Heat (or thermal) energy of a body with uniform properties: 

Heat energy = cmu, 

where m is the body mass, u is the temperature, c is the specific heat, units [c] = 

L2T−2U−1 (basic units are M mass, L length, T time, U temperature). c is the energy 

required to raise a unit mass of the substance 1 unit in temperature. 

2. Fourier’s law of heat transfer: rate of heat transfer proportional to negative 

temperature gradient, 

Rate of heat transfer ∂u 
= (1) −K0 

area ∂x 

where K0 is the thermal conductivity, units [K0] = MLT−3U−1 . In other words, heat 

is transferred from areas of high temp to low temp. 

3. Conservation of energy. 

Consider a uniform rod of length l with non-uniform temperature lying on the 

x-axis from x = 0 to x = l. By uniform rod, we mean the density ρ, specific heat c, 

thermal conductivity K0, cross-sectional area A are ALL constant. Assume the sides 
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of the rod are insulated and only the ends may be exposed. Also assume there is no 

heat source within the rod. Consider an arbitrary thin slice of the rod of width Δx 

between x and x+Δx. The slice is so thin that the temperature throughout the slice 

is u (x, t). Thus, 

Heat energy of segment = c × ρAΔx × u = cρAΔxu (x, t) . 

By conservation of energy, 

change of 
heat in from heat out from 

heat energy of = 
left boundary 

− 
right boundary 

. 

segment in time Δt 

From Fourier’s Law (1), 

∂u ∂u 
cρAΔxu (x, t + Δt) − cρAΔxu (x, t) = ΔtA −K0 − ΔtA −K0

∂x ∂x x x+Δx 

Rearranging yields (recall ρ, c, A, K0 are constant), 

u (x, t + Δt) −
Δt 

u (x, t) 
= 

K0 

cρ 

�
�

∂u 
∂x 

� 
x+Δx 

− 
Δx 

�

∂u 
∂x 

� 
x 

� 

Taking the limit Δt, Δx → 0 gives the Heat Equation, 

∂u ∂2u 

∂t 
= κ 

∂x2 
(2) 

where 

κ = 
K0 

(3) 
cρ 

is called the thermal diffusivity, units [κ] = L2/T . Since the slice was chosen arbi

trarily, the Heat Equation (2) applies throughout the rod. 

1.2 Initial condition and boundary conditions 

To make use of the Heat Equation, we need more information: 

1. Initial Condition (IC): in this case, the initial temperature distribution in the 

rod u (x, 0). 

2. Boundary Conditions (BC): in this case, the temperature of the rod is affected 

by what happens at the ends, x = 0, l. What happens to the temperature at the 

end of the rod must be specified. In reality, the BCs can be complicated. Here we 

consider three simple cases for the boundary at x = 0. 
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(I) Temperature prescribed at a boundary. For t > 0, 

u (0, t) = u1 (t) . 

(II) Insulated boundary. The heat flow can be prescribed at the boundaries, 

∂u 
(0, t) = φ1 (t)−K0

∂x 

(III) Mixed condition: an equation involving u (0, t), ∂u/∂x (0, t), etc. 

Example 1. Consider a rod of length l with insulated sides is given an initial 

temperature distribution of f (x) degree C, for 0 < x < l. Find u (x, t) at subsequent 

times t > 0 if end of rod are kept at 0o C. 

The Heat Eqn and corresponding IC and BCs are thus 

PDE: ut = κuxx, 0 < x < l, (4) 

IC: u (x, 0) = f (x) , 0 < x < l, (5) 

BC: u (0, t) = u (L, t) = 0, t > 0. (6) 

Physical intuition: we expect u 0 as t → ∞.→

1.3 Non-dimensionalization 

Dimensional (or physical) terms in the PDE (2): k, l, x, t, u. Others could be 

introduced in IC and BCs. To make the solution more meaningful and simpler, we 

group as many physical constants together as possible. Let the characteristic length, 

time and temperature be L∗, T∗ and U∗, respectively, with dimensions [L∗] = L, 

[T∗] = T , [U∗] = U . Introduce dimensionless variables via 

x t � � u (x, t) f (x) 
x̂ = , t̂ = , ˆ ˆ t = , x) = .u x, ˆ f̂ (ˆ (7) 

L∗ T∗ U∗ U∗ 

The variables x̂, t̂, û are dimensionless (i.e. no units, [x̂] = 1). The sensible choice 

for the characteristic length is L∗ = l, the length of the rod. While x is in the range 

0 < x < l, ˆ < ˆx is in the range 0 x < 1. 

The choice of dimensionless variables is an ART. Sometimes the statement of the 

problem gives hints: e.g. the length l of the rod (1 is nicer to deal with than l, an 

unspecified quantity). Often you have to solve the problem first, look at the solution, 

and try to simplify the notation. 
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From the chain rule,


∂u ∂û ∂t̂ U∗ ∂û

ut = = U∗ = 

∂t ∂t̂ ∂t T∗ ∂t̂
, 

∂u ∂û ∂x̂ U∗ ∂û
ux = = U∗ = 

∂x ∂x̂ ∂x L∗ ∂x̂

U∗ ∂
2û

uxx = 
L2 
∗ ∂x̂2 

Substituting these into the Heat Eqn (4) gives 

∂û T∗κ ∂2û
=ut = κuxx ⇒ 

∂t̂ L2 
∗ ∂x̂2 

To make the PDE simpler, we choose T∗ = L2/κ = l2/κ, so that ∗

∂û ∂2û
= , 0 x < 1, ˆ< ˆ t > 0. 

∂t̂ ∂x̂2

The characteristic (diffusive) time scale in the problem is T∗ = l2/κ. For different 

substances, this gives time scale over which diffusion takes place in the problem. The 

IC (5) and BC (6) must also be non-dimensionalized: 

IC: û (x̂, 0) = f̂ (x̂) , 0 x < 1,< ˆ

BC: û 0, t̂ = û 1, t̂ = 0, t > ˆ 0. 

1.4 Dimensionless problem 

Dropping hats, we have the dimensionless problem 

PDE: ut = uxx, 0 < x < 1, (8) 

IC: u (x, 0) = f (x) , 0 < x < 1, (9) 

BC: u (0, t) = u (1, t) = 0, t > 0, (10) 

where x, t are dimensionless scalings of physical position and time. 

2 Separation of variables 

Ref: Guenther & Lee, §4.2 and 5.1, Myint-U & Debnath §6.4 

[Sept 12, 2006] 

We look for a solution to the dimensionless Heat Equation (8) – (10) of the form 

u (x, t) = X (x) T (t) (11) 
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Take the relevant partial derivatives:


′′ ′ uxx = X (x) T (t) , ut = X (x) T (t) 

where primes denote differentiation of a single-variable function. The PDE (8), ut = 

uxx, becomes 
′ ′′ T (t) X (x) 

= 
T (t) X (x) 

The left hand side (l.h.s.) depends only on t and the right hand side (r.h.s.) only 

depends on x. Hence if t varies and x is held fixed, the r.h.s. is constant, and hence 

T ′ /T must also be constant, which we set to −λ by convention: 

′ ′′ T (t) X (x) 

T (t)
= 

X (x)
= −λ, λ = constant. (12) 

The BCs become, for t > 0, 

u (0, t) = X (0) T (t) = 0 

u (1, t) = X (1) T (t) = 0 

Taking T (t) = 0 would give u = 0 for all time and space (called the trivial solution), 

from (11), which does not satisfy the IC unless f (x) = 0. If you are lucky and 

f (x) = 0, then u = 0 is the solution (this has to do with uniqueness of the solution, 

which we’ll come back to). If f (x) is not zero for all 0 < x < 1, then T (t) cannot be 

zero and hence the above equations are only satisfied if 

X (0) = X (1) = 0. (13) 

2.1 Solving for X (x) 

Ref: Guenther & Lee, §4.2 and 5.1 and 7.1, Myint-U & Debnath §7.1 – 7.3 

We obtain a boundary value problem for X (x), from (12) and (13), 

′′ X (x) + λX (x) = 0, 0 < x < 1, (14) 

X (0) = X (1) = 0. (15) 

This is an example of a Sturm-Liouville problem (from your ODEs class). 

There are 3 cases: λ > 0, λ < 0 and λ = 0. 

(i) λ < 0. Let λ = −k2 < 0. Then the solution to (14) is 

X = Aekx + Be−kx 
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for integration constants A, B found from imposing the BCs (15), 

X (0) = A + B = 0, X (1) = Aek + Be−k = 0. 

The first gives A = −B, the second then gives A e2k − 1 = 0, and since |k| > 0 we 

have A = B = u = 0, which is the trivial solution. Thus we discard the case λ < 0. 

(ii) λ = 0. Then X (x) = Ax +B and the BCs imply 0 = X (0) = B, 0 = X (1) = 

A, so that A = B = u = 0. We discard this case also. 

(iii) λ > 0. In this case, (14) is the simple harmonic equation whose solution is 

X (x) = A cos 
√

λx + B sin 
√

λx . (16) 

The BCs imply 0 = X (0) = A, and B sin 
√

λ = 0. We don’t want B = 0, since that 

would give the trivial solution u = 0, so we must have 

sin 
√

λ = 0. (17) 

Thus 
√

λ = nπ, for any nonzero integer n (n = 1, 2, 3, ...). We use subscripts 

to label the particular n-value. The values of λ are called the eigenvalues of the 

Sturm-Liouville problem (14), 

λn = n 2π2 , n = 1, 2, 3, ... 

and the corresponding solutions of (14) are called the eigenfunctions of the Sturm-Liouville 

problem (14), 

Xn (x) = bn sin (nπx) , n = 1, 2, 3, ... (18) 

We have assumed that n > 0, since n < 0 gives the same solution as n > 0. 

2.2 Solving for T (t) 

When solving for X (x), we found that non-trivial solutions arose for λ = n2π2 for all 

nonzero integers n. The equation for T (t) is thus, from (12), 

T ′ (t) = −n 2π2T (t) 

and, for n, the solution is 

Tn = cne 
−n2π2t , n = 1, 2, 3, ... (19) 

where the cn’s are constants of integration. 

6 



� 

� � 

� 

� 

2.3 Full solution u (x, t) 

Ref: Myint-U & Debnath §6.4, Ch 5 

Putting things together, we have, from (11), (18) and (19), 

un (x, t) = Bn sin (nπx) e −n2π2t , n = 1, 2, 3, ... (20) 

where Bn = cnbn. Each function un (x, t) is a solution to the PDE (8) and the BCs 

(10). But, in general, they will not individually satisfy the IC (9), 

un (x, 0) = Bn sin (nπx) = f (x) . 

We now apply the principle of superposition: if u1 and u2 are two solutions to the 

PDE (8) and BC (10), then c1u1 + c2u2 is also a solution, for any constants c1, c2. 

This relies on the linearity of the PDE and BCs. We will, of course, soon make this 

more precise.... 

Since each un (x, 0) is a solution of the PDE, then the principle of superposition 

says any finite sum is also a solution. To solve the IC, we will probably need all the 

solutions un, and form the infinite sum (convergence properties to be checked), 

∞ 

u (x, t) = un (x, t) . (21) 
n=1 

u (x, t) satisfies the BCs (10) since each un (x, t) does. Assuming term-by-term dif

ferentiation holds (to be checked) for the infinite sum, then u (x, t) also satisfies the 

PDE (8). To satisfy the IC, we need to find Bn’s such that 

∞ ∞ 

f (x) = u (x, 0) = un (x, 0) = Bn sin (nπx) . (22) 
n=1 n=1 

This is the Fourier Sine Series of f (x). 

To solve for the Bn’s, we use the orthogonality property for the eigenfunctions 

sin (nπx), 
� 1 0 m = n 1 

sin (mπx) sin (nπx) dx = 
�

= δmn (23) 
0 1/2 m = n 2 

where δmn is the kronecker delta, 

0 m = n 
δmn = 

�
1 m = n 

The orthogonality relation (23) is derived by substituting 

2 sin (mπx) sin (nπx) = cos ((m − n) πx) − cos ((m + n) πx) 
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into the integral on the left hand side of (23) and noting 
� 1 

cos (mπx) dx = δm0. 
0 

The orthogonality of the functions sin (nπx) is analogous to that of the unit vectors 

x̂ and ŷ in 2-space; the integral from 0 to 1 in (23) above is analogous to the dot 

product in 2-space. 

To solve for the Bn’s, we multiply both sides of (22) by sin (mπx) and integrate 

from 0 to 1: 
� 1 ∞ � 1 

sin (mπx) f (x) dx = Bn sin (nπx) sin (mπx) dx 
0 n=1 0 

Substituting (23) into the right hand side yields 

� ∞1 
� 1 

sin (mπx) f (x) dx = Bn δnm 
20 n=1 

By definition of δnm, the only term that is non-zero in the infinite sum is the one 

where n = m, thus 
� 1 1 

sin (mπx) f (x) dx = Bm
20 

Rearranging yields 
� 1 

Bm = 2 sin (mπx) f (x) dx. (24) 
0 

The full solution is, from (20) and (21), 

∞ 

u (x, t) = Bn sin (nπx) e −n2π2t , (25) 
n=1 

where Bn are given by (24). 

To derive the solution (25) of the Heat Equation (8) and corresponding BCs 

(10) and IC (9), we used properties of linear operators and infinite series that need 

justification. 

3 Example : Cooling of a rod from a constant ini

tial temperature 

Suppose the initial temperature distribution f (x) in the rod is constant, i.e. f (x) = 

u0. The solution for the temperature in the rod is (25), 

∞ 

u (x, t) = Bn sin (nπx) e −n2π2t , 
n=1 
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where, from (24), the Fourier coefficients are given by 

� 1 1 

Bn = 2 sin (nπx) f (x) dx = 2u0 sin (nπx) dx. 
0 0 

Calculating the integrals gives 

Bn = 2u0 

� 1 

sin (nπx) dx = 
cos (nπ) − 1 

=
2u0 

((−1)n − 1) = 
0 n even 

0 

−2u0 
nπ 

−
nπ 4u0 n odd 

nπ 

In other words, 
4u0

B2n = 0, B2n−1 = 
(2n − 1) π 

and the solution becomes 

∞ 

u (x, t) =
4u0 sin ((2n − 1) πx) � 2 � 

π (2n − 1) 
exp − (2n − 1) π2t . (26) 

n=1 

3.1 Approximate form of solution 

The number of terms of the series (26) needed to get a good approximation for u (x, t) 

depends on how close t is to 0. The series is 

4u0 −π2t sin (3πx) −9π2t u (x, t) = sin (πx) e + e + . 
π 3 

· · · 

The ratio of the first and second terms is 

|second term| 
= 

e−8π2t |sin 3πx|

|first term| 3 |sin πx|


≤ e −8π2t using |sin nx| ≤ n |sin x|
1 ≤ e −8 for t ≥
π2 

< 0.00034 

It can also be shown that the first term dominates the sum of the rest of the terms, 

and hence 
4u0 −π2t 1 

u (x, t) ≈ sin (πx) e , for t ≥
π2 

. (27) 
π 

What does t = 1/π2 correspond to in physical time? In physical time t ′ = l2t/κ 

(recall our scaling - here we use t as the dimensionless time and t ′ as dimensional 

time), t = 1/π2 corresponds to: 

t ′ ≈ 15 minutes, for a 1 m rod of copper (κ ≈ 1.1 cm2 sec−1) 

t ′ ≈ 169 minutes, for a 1 m rod of steel (κ ≈ 0.1 cm2 sec−1) 

t ′ ≈ 47 hours, for a 1 m rod of glass (κ ≈ 0.006 cm2 sec−1) 
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At t = 1/π2, the temperature at the center of the rod (x = 1/2) is, from (27), 

4 
u (x, t) ≈ u0 = 0.47u0. 

πe 

Thus, after a (scaled) time t = 1/π2, the temperature has decreased by a factor of 

0.47 from the initial temperature u0. 

3.2 Geometrical visualization of the solution 

[Sept 14, 2006] 

To analyze qualitative features of the solution, we draw various types of curves in 

2D: 

1. Spatial temperature profile, given by 

u = u (x, t0) 

where t0 is a fixed value of x. These profiles are curves in the ux-plane. 

2. Temperature profiles in time, 

u = u (x0, t) 

where x0 is a fixed value of x. These profiles are curves in the ut-plane. 

3. Curves of constant temperature in the xt-plane (level curves), 

u (x, t) = C 

where C is a constant. 

Note that the solution u = u (x, t) is a 2D surface in the 3D uxt-space. The above 

families of curves are the different cross-sections of this solution surface. Drawing the 

2D cross-sections is much simpler than drawing the 3D solution surface. 

Sketch typical curves: when sketching the curves in 1-3 above, we draw a few 

typical curves and any special cases. While math packages such as Matlab can be 

used to compute the curves from, say, 20 terms in the full power series solution (26), 

the emphasis in this course is to use simple considerations to get a rough idea of what 

the solution looks like. For example, one can use the first term approximation (27), 

simple physical considerations on heat transfer, and the fact that the solution u (x, t) 

is continuous in x and t, so that if t1 is close to t1, u (x, t1) is close to u (x, t2). 

3.2.1 Spatial temperature profiles 

For fixed t = t0, the first term approximate solution (27) is 

4u0 
u (x, t) ≈ e −π2t0 sin (πx) , t ≥ 1/π2 . (28) 

π 
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Figure 1: Spatial temperature profiles u(x, t0).


This suggests the center of the rod, x = 1/2, is a line of symmetry for u (x, t), i.e.


1 1 
u + s, t = u 

2 
− s, t 

2 

and, for each fixed time, the location of the maximum (minimum) temperature if 

u0 > 0 (u0 < 0). We can prove the symmetry property by noting that the original 

PDE/BC/IC problem is invariant under the transformation x 1 − x. Note also → 
that, from (26), 

∞ 

ux (x, t) = 4u0 cos ((2n − 1) πx) exp − (2n − 1)2 π2t 
n=1 

Thus ux (1/2, t) = 0 and uxx (1/2, t) < 0, so the 2nd derivative test implies that 

x = 1/2 is a local max. 

In Figure 1, we have plotted two typical profiles, one at early times t = t0 ≈ 0 and 

the other at late times t = t0 ≫ 0, and two special profiles, the initial temperature 

at t = 0 (u = u0) and the temperature as t → ∞ (u = 0). The profile for t = t0 ≫ 0 

is found from the first term approximation (28). The line of symmetry x = 1/2 is 

plotted as a dashed line for reference in Figure 1. 
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Figure 2: Temperature profiles in time u (x0, t). 

3.2.2 Temperature profiles in time 

Setting x = x0 in the approximate solution (27), 

u (x0, t) ≈ 4u0 
sin (πx0) e −π2t , t ≥ 1/π2 . 

π 

Two typical profiles are sketched in Figure 2, one near the center of the rod (x0 ≈ 1/2) 

and one near the edges (x0 ≈ 0 or 1). To draw these we noted that the center of 

the rod cools more slowly than points near the ends. One special profile is plotted, 

namely the temperature at the rod ends (x = 0, 1). 

3.2.3 Curves of constant temperature (level curves of u(x, t)) 

In Figure 3, we have drawn three typical level curves and two special ones, u = 0 

(rod ends) and u = u0 (the initial condition). For a fixed x = x0, the temperature 

in the rod decreases as t increases (motivated by the first term approximation (28)), 

as indicated by the points of intersection on the dashed line. The center of the rod 

(x = 1/2) is a line of symmetry, and at any time, the maximum temperature is at 

the center. Note that at t = 0, the temperature is discontinuous at x = 0, 1. 

To draw the level curves, it is easiest to already have drawn the spatial temperature 

profiles. Draw a few horizontal broken lines across your u vs. x plot. Suppose you 

draw a horizontal line u = u1. Suppose this line u = u1 crosses one of your profiles 

u (x, t0) at position x = x1. Then (x1, t0) is a point on the level curve u (x, t) = u1. 

Now plot this point in your level curve plot. By observing where the line u = u1 

crosses your various spatial profiles, you fill in the level curve u (x, t) = u1. Repeat 
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Figure 3: Curves of constant temperature u(x, t) = c, i.e., the level curves of u(x, t). 

this process for a few values of u1 to obtain a few representative level curves. Plot 

also the special cases: u (x, t) = u0/w, u = 0, etc. 

When drawing visualization curves, the following result is also helpful. 

3.2.4 Maximum Principle for the basic Heat Problem 

Ref: Guenther & Lee §5.2, Myint-U & Debnath §8.2 

This result is useful when plotting solutions: the extrema of the solution of the 

heat equation occurs on the space-time “boundary”, i.e. the maximum of the initial 

condition and of the time-varying boundary conditions. More precisely, given the 

heat equation with some initial condition f (x) and BCs u (0, t), u (1, t), then on a 

given time interval [0, T ], the solution u (x, t) is bounded by 

umin ≤ u (x, t) ≤ umax 

where 

umax = max max f (x) , max u (0, t) , max u (1, t)
0<x<1 0<t<T 0<t<T 

umin = min min f (x) , min u (0, t) , min u (1, t)
0<x<1 0<t<T 0<t<T 
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Thus, in the example above, umin = 0 and umax = u0, hence for all x ∈ [0, 1] and 

t ∈ [0, T ], 0 ≤ u (x, t) ≤ u0. 

4 Equilibrium temperature profile (steady-state) 

Intuition tells us that if the ends of the rod are held at 0o C and there are no heat 

sources or sinks in the rod, the temperature in the rod will eventually reach 0. The 

solution above confirms this. However, we do not have to solve the full problem to 

determine the asymptotic or long-time behavior of the solution. 

Instead, the equilibrium or steady-state solution u = uE (x) must be independent 

of time, and will thus satisfy the PDE and BCs with ut = 0, 

′′ uE = 0, 0 < x < 1; uE (0) = uE (1) = 0. 

The solution is uE = c1x + c2 and imposing the BCs implies uE (x) = 0. In other 

words, regardless of the initial temperature distribution u (x, 0) = f (x) in the rod, 

the temperature eventually goes to zero. 

4.1 Rate of decay of u (x, t) 

How fast does u approach uE = 0? From our estimate (82) above, 

|un (x, t)| ≤ Be−n2π2t , n = 1, 2, 3, ... 
� �n 

where B is a constant. Noting that e−n2π2t e−nπ2t = e−π2t , we have ≤

� ∞ 
� ∞ ∞ 

�

�

�

� � 
n Br −π2t 

� un (x, t)
� un (x, t) ≤ B r = , r = e < 1 (t > 0). 

� 
n=1 

� 
≤ 

n=1 

| |
n=1 

1 − r 

�∞The last step is the geometric series result n=1 r
n = 

1−
r

r 
, for |r| < 1. Thus 

� � t 
� 

∞ 
� Be−π2

� un (x, t)
� 

−π2t
, t > 0.	 (29) 

� 
n=1 

� 
≤

1 − e

Therefore 

•	 u (x, t) approaches the steady-state uE (x) = 0 exponentially fast (i.e. the rod 

cools quickly) 

the first term in the series, sin (πx) e−π2t (term with smallest eigenvalue λ = π)• 
determines the rate of decay of u (x, t) 

•	 the Bn’s may also affect the rate of approach to the steady-state, for other 

problems 
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4.2 Error of first-term approximation 

Using the method in the previous section, we can compute the error between the 

first-term and the full solution (26), 

� ∞	
� 

|u (x, t) − u1 (x, t)| = 
�

� 

n=1 

un (x, t) − u1 (x, t)
�

� 

� ∞ 
� ∞	 ∞ 

� �	 Br2 

=	
� un (x, t)

� un (x, t) ≤ B r n = 
� 
n=2 

� 
≤ 

n=2 

| |
n=2 

1 − r 

where r = e−π2t . Hence the solution u (x, t) approaches the first term u1 (x, t) expo

nentially fast, 
Be−2π2t 

|u (x, t) − u1 (x, t)| ≤
1 − e

, t > 0.	 (30) 
−π2t

With a little more work we can get a much tighter (i.e. better) upper bound. We 

consider the sum 
∞ 

|un (x, t)|
n=N 

Substituting for un (x, t) gives 

∞ ∞	 ∞ 

|un (x, t)| ≤ B e −n2π2t = Be−N2π2t e −(n2−N2)π2t (31) 
n=N n=N	 n=N 

Here’s the trick: for n ≥ N , 

n 2 − N2 = (n + N) (n − N) ≥ 2N (n − N) ≥ 0. 

Since e−x is a decreasing function, then 

e −(n2−N2)π2t ≤ e −2N(n−N)π2t	 (32) 

for t > 0. Using the inequality (32) in Eq. (31) gives 

∞	 ∞ 

|un (x, t)| ≤ Be−N2π2t e −2N(n−N)π2t 

n=N	 n=N 

� �N 
∞ −2Nπ2t 
�

� �n e
= BeN2π2t e −2Nπ2t = BeN2π2t . 

1 − e−2Nπ2t 
n=N 

Simplifying the expression on the right hand side yields 

∞ 
� Be−N2π2t


n=N 

|un (x, t)| ≤
1 − e−2Nπ2t 

(33)
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For N = 1, (33) gives the temperature decay 

� ∞ 
� ∞ 

� � t 
� � Be−π2

|u (x, t)| = 
�

� 
n=N 

un (x, t) 
�

� ≤ 
n=N 

|un (x, t)| ≤
1 − e−2π2t

, (34) 

which is slightly tighter than (29). For N = 2, (33) gives the error between u (x, t) 

and the first term approximation, 

� ∞ 
� ∞ 

� � Be−4π2t 

|u (x, t) − u1 (x, t)| = 
�

�

� 
un (x, t)

�

�

� 
≤ |un (x, t)| ≤

1 − e−4π2t 
n=2 n=2 

which is a much better upper bound than (30). 

Note that for an initial condition u (x, 0) = f (x) that is is symmetric with respect 

to x = 1/2 (e.g. f (x) = u0), then u2n = 0 for all n, and hence error between u (x, t) 

and the first term u1 (x, t) is even smaller, 

� ∞ 
� ∞ 

|u (x, t) − u1 (x, t)| = 
�

�

� 
un (x, t)

�

�

� 
≤ |un (x, t)|

n=3 n=3 

Applying result (33) with N = 3 gives 

Be−9π2t 

|u (x, t) − u1 (x, t)| ≤
1 − e−6π2t 

. 

Thus, in this case, the error between the solution u (x, t) and the first term u1 (x, t) 

decays as e−9π2t - very quickly! 

5 Review of Fourier Series 

Ref: Guenther & Lee, §3.1, Myint-U & Debnath §5.1–5.3, 5.5–5.6 

[Sept 19, 2006] 

Motivation: Recall that the initial temperature distribution satisfies 

∞ 

f (x) = u (x, 0) = Bn sin (nπx) . 
n=1 

In the example above with a constant initial temperature distribution, f (x) = u0, we 

have 
∞

4u0 sin ((2n − 1) πx) 
. (35) u0 = 

π 2n − 1 
n=1 

Note that at x = 0 and x = 1, the r.h.s. does NOT converge to u0 = 0, but rather to 

0 (the BCs). Note that the Fourier Sine Series of f (x) is odd and 2-periodic in space 

and converges to the odd periodic extension of f (x) = u0. 
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Odd periodic extension The odd periodic extension of a function f (x) defined 

for x ∈ [0, 1], is the Fourier Sine Series of f (x) evaluated at any x ∈ R, 

∞ 

f̃ (x) = Bn sin (nπx) . 
n=1 

Note that since sin (nπx) = − sin (−nπx) and sin (nπx) = sin (nπ (x + 2)), then 

f̃ (x) = −f̃ (−x) and f̃ (x + 2) = f̃ (x). Thus f̃ (x) is odd, 2-periodic and f̃ (x) 

equals f (x) on the open interval (0, 1). What conditions are necessary for f (x) to 

equal f̃ (x) on the closed interval [0, 1]? This is covered next. 

Aside: cancelling u0 from both sides of (35) gives a really complicated way of 

writing 1, 
∞

4 sin ((2n − 1) πx)
1 = . 

π 2n − 1 
n=1 

5.1 Fourier Sine Series 

Given an integrable function f (x) on [0, 1], the Fourier Sine Series of f (x) is 

∞ 

Bn sin (nπx) (36) 
n=1 

where 
� 1 

Bn = 2 f (x) sin (nπx) dx. (37) 
0 

The associated orthogonality properties are 

� 1 1/2, m = n = 0,
sin (mπx) sin (nπx) dx = 

�
0 0, m = n. 

5.2 Fourier Cosine Series 

Given an integrable function f (x) on [0, 1], the Fourier Cosine Series of f (x) is 

∞ 

A0 + An cos (nπx) (38) 
n=1 

where 
� 1 

A0 = f (x) dx, (average of f (x)) (39) 
0 
� 1 

An = 2 
0 

f (x) cos (nπx) dx, n ≥ 1. (40) 
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The associated orthogonality properties are


� 1 1/2, m = n = 0,
cos (mπx) cos (nπx) dx = 

�
0 0, m = n. 

e.g. The cosine series of f (x) = u0 for x ∈ [0, 1] is just u0. In other words, A0 = u0 

and An = 0 for n ≥ 1. 

5.3 The (full) Fourier Series 

The Full Fourier Series of an integrable function f (x), now defined on [−1, 1], is 

∞ 

f̂ (x) = a0 + (an cos (nπx) + bn sin (nπx)) (41) 
n=1 

where 

1 
� 1 

a0 = f (x) dx 
2 −1 
� 1 

an = f (x) cos (nπx) dx 
−1 
� 1 

bn = f (x) sin (nπx) dx 
−1 

The associated orthogonality properties of sin and cos on [−1, 1] are, for any m,n = 

1, 2, 3, ... 
� 1 

sin (mπx) cos (nπx) dx = 0, all m,n, 
−1 

� 1 1, m = n = 0,
sin (mπx) sin (nπx) dx = 

�
−1 0, m = n, 

� 1 1, m = n = 0,
cos (mπx) cos (nπx) dx = 

�
−1 0, m = n. 

5.4 Piecewise Smooth 

Ref: Guenther & Lee p. 50, 

Provided a function f (x) is integrable, its Fourier coefficients can be calculated. 

It does not follow, however, that the corresponding Fourier Series (Sine, Cosine or 

Full) converges or has the sum f (x). In order to ensure this, f (x) must satisfy some 

stronger conditions. 
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Definition Piecewise Smooth function: A function f (x) defined on a closed 

interval [a, b] is said to be piecewise smooth on [a, b] if there is a partition of [a, b], 

a = x0 < x1 < x2 < < xn = b· · · 

such that f has a continuous derivative (i.e. C1) on each closed subinterval [xm, xm+1]. 

E.g. any function that is C1 on an interval [a, b] is, of course, piecewise smooth on 

[a, b]. 

E.g. the function 

f (x) = 
2x, 0 ≤ x ≤ 1/2 

1/2, 1/2 < x ≤ 1 

is piecewise smooth on [0, 1], but is not continuous on [0, 1]. 

E.g. the function f (x) = |x| is both continuous and piecewise smooth on [−1, 1], 
′ despite f (x) not being defined at x = 0. This is because we partition [−1, 1] into 

′ two subintervals [−1, 0] and [0, 1]. When worrying about f (x) near x = 0, note that 

on [0, 1] we only care about the left limit f ′ (0−) and for [−1, 0], we only care about 

the right limit f ′ (0+). 

E.g. the function f (x) = |x| 1/2 is continuous on [−1, 1] but not piecewise smooth 

on [−1, 1], since f ′ (0−) and f ′ (0+) do not exist. 

5.5 Convergence of Fourier Series 

Ref: Guenther & Lee p. 49 and (optional) §3.3, Myint-U & Debnath §5.10 

Theorem [Convergence of the Fourier Sine and Cosine Series]: If f (x) is piecewise 

smooth on the closed interval [0, 1] and continuous on the open interval (0, 1), then 

the Fourier Sine and Cosine Series converge for all x ∈ [0, 1] and have the sum f (x) 

for all x ∈ (0, 1). 

Note: Suppose f (x) is piecewise smooth on [0, 1] and is continuous on (0, 1) except 

at a jump discontinuity at x = a. Then the Fourier Sine and Cosine Series converge 

to f (x) on (0, 1) and converge to the average of the left and right limits at x = a, 

i.e. (f (a−) + f (a+)) /2. At the endpoints x = 0, 1, the Sine series converges to zero, 

since sin (nπx) = 0 at x = 0, 1 for all n. 

Theorem [Convergence of the Full Fourier Series]: If f (x) is piecewise smooth on 

the closed interval [−1, 1] and continuous on the open interval (−1, 1), then the Full 

Fourier Series converges for all x ∈ [−1, 1] and has the sum f (x) for all x ∈ (−1, 1). 

5.6 Comments 

Ref: see problems Guenther & Lee p. 53 
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Given a function f (x) that is piecewise smooth on [0, 1] and continuous on (0, 1), 

the Fourier Sine and Cosine Series of f (x) converge on [0, 1] and equal f (x) on the 

open interval (0, 1) (i.e. perhaps excluding the endpoints). Thus, for any x ∈ (0, 1), 

∞ ∞ 

A0 + An cos (nπx) = f (x) = Bn sin (nπx) . 
n=1 n=1 

In other words, the Fourier Cosine Series (left hand side) and the Fourier Sine Series 

(right hand side) are two different representations for the same function f (x), on the 

open interval (0, 1). The values at the endpoints x = 0, 1 may not be the same. The 

choice of Sine or Cosine series is determined from the type of eigenfunctions that give 

solutions to the Heat Equation and BCs. 

6 Well-Posed Problems 

Ref: Guenther & Lee §1.8 and §5.2 (in particular p. 160 and preceding pages, and p. 

150) 

Ref: Myint-U & Debnath §1.2, §6.5 

We call a mathematical model or equation or problem well-posed if it satisfies the 

following 3 conditions: 

1. [Existence of a solution]: The mathematical model has at least 1 solution. 

Physical interpretation: the system exists over at least some finite time interval. 

2. [Uniqueness of solution]: The mathematical model has at most 1 solution. Phys

ical interpretation: identical initial states of the system lead to the same out

come. 

3. [Continuous dependence on parameters]: The solution of the mathematical 

model depends continuously on initial conditions and parameters. Physical 

interpretation: small changes in initial states (or parameters) of the system 

produce small changes in the outcome. 

If an IVP (initial value problem) or BIVP (boundary initial value problem - e.g. 

Heat Problem) satisfies 1, 2, 3 then it is well-posed. 

Example: for the basic Heat Problem, we showed 1 by construction a solution 

using the method of separation of variables. Continuous dependence is more difficult 

to show (need to know about norms), but it is true, and we will use this fact when 

sketching solutions. Also, when drawing level curves u (x, t) = const, small changes 

in parameters (x, t) leads to a small change in u. We now prove the 2nd part of 

well-posedness, uniqueness of solution, for the basic heat problem. 
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6.1 Uniqueness of solution to the Heat Problem 

Definition We define the two space-time sets 

D = {(x, t) : 0 ≤ x ≤ 1, t > 0} 
D = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0} 

and the space of functions 

C 2 
� 
D 
� 

= 
� 
u (x, t) : uxx continuous in D and u continuous in D 

� 
. 

In other words, the space of functions that are twice continuously differentiable on 

[0, 1] for t > 0 and continuous on [0, 1] for t ≥ 0. 

Theorem The basic Heat Problem, i.e. the Heat Equation (8) with BC (10) 

and IC (9), 

PDE: ut = uxx, 0 < x < 1, 

IC: u (x, 0) = f (x) , 0 < x < 1, 

BC: u (0, t) = u (1, t) = 0, t > 0, 

has at most one solution in the space of functions C2 . 
� � 

D 
Proof : Consider two solutions u1, u2 ∈ C2 D to the Heat Problem. Let v = 

u1 − u2. We aim to show that v = 0 on [0, 1], which would prove that u1 = u2 and 

then solution to the Heat Equation (8) with BC (10) and IC (9) is unique. Since each 

of u1, u2 satisfies (8), (9), and (10), the function v satisfies 

vt = (u1 − u2) (42) t 

= u1t − u2t 

= u1xx − u2xx 

= (u1 − u2)xx 

= vxx, 0 < x < 1, 

and similarly, 

IC: v (x, 0) = u1 (x, 0) − u2 (x, 0) = f (x) − f (x) = 0, 0 < x < 1, (43) 

BC: v (0, t) = u1 (0, t) − u2 (0, t) = 0, v (1, t) = 0, t > 0. (44) 

Define the function 
� 1 

V̄ (t) = v 2 (x, t) dx ≥ 0, t ≥ 0. 
0 
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Showing that v (x, t) = 0 reduces to showing that V̄ (t) = 0, since v (x, t) is continuous 

on [0, 1] for all t ≥ 0 and if there was a point x such that v (x, t) =� 0, then V̄ (t) 

would be strictly greater than 0. To show V̄ (t) = 0, we differentiate V̄ (t) in time 

and substitute for vt from the PDE (42), 

dV̄ 1 1 

= 2 vvtdx = 2 vvxxdx 
dt 0 0 

Integrating by parts (note: vvxx = (vvx)x − vx
2) gives 

dV̄
� 1

1 

� 1
2 

dt 
= 2 

0 

vvxxdx = 2 vvx|x=0 − 
0 

vxdx 

Using the BCs (44) gives 
dV̄ 1

2 

dt 
= −2 

0 

vxdx ≤ 0. 

The IC (43) implies that 

� 1 

V̄ (0) = v 2 (x, 0) dx = 0. 
0 

Thus, V̄ (t) ≥ V /dt ≤ V (0) = 0, i.e. ¯0, d ¯ 0, and ¯ V (t) is a non-negative, non-

increasing function of time whose initial value is zero. Thus, for all time, V̄ (t) = 0 

and v (x, t) = 0 for all x ∈ [0, 1], implying that u1 = u2. This proves that the solution 

to the Heat Equation (8), its IC (9), and BCs (10) is unique, i.e. there is at most one 

solution. Uniqueness proofs for other types of BCs follows in a similar manner. 

7 Variations on the basic Heat Problem 

[Sept 21, 2006] 

We now consider variations to the basic Heat Problem, including different types 

of boundary conditions and the presence of sources and sinks. 

7.1 Boundary conditions 

7.1.1 Type I BCs (Dirichlet conditions) 

Ref: Guenther & Lee p. 149 

Type I, or Dirichlet, BCs specify the temperature u (x, t) at the end points of the 

rod, for t > 0, 

u (0, t) = g1 (t) , 

u (1, t) = g2 (t) . 
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Type I Homogeneous BCs are 

u (0, t) = 0, 

u (1, t) = 0. 

The physical significance of these BCs for the rod is that the ends are kept at 0o C. 

The solution to the Heat Equation with Type I BCs was considered in class. After 

separation of variables u (x, t) = X (x) T (t), the associated Sturm-Liouville Boundary 

Value Problem for X (x) is 

′′ X + λX = 0; X (0) = X (1) = 0. 

The eigenfunctions are Xn (x) = Bn sin (nπx). 

7.1.2 Type II BCs (Newmann conditions) 

Ref: Guenther & Lee p. 152 problem 1 

Type II, or Newmann, BCs specify the rate of change of temperature ∂u/∂x (or 

heat flux) at the ends of the rod, for t > 0, 

∂u 
(0, t) = g1 (t) ,

∂x 
∂u 

(1, t) = g2 (t) . 
∂x 

Type II Homogeneous BCs are 

∂u 
(0, t) = 0,

∂x 
∂u 

(1, t) = 0. 
∂x 

The physical significance of these BCs for the rod is that the ends are insulated. 

These lead to another relatively simple solution involving a cosine series (see problem 

6 on PS 1). After separation of variables u (x, t) = X (x) T (t), the associated Sturm-

Liouville Boundary Value Problem for X (x) is 

′′ ′ ′ X + λX = 0; X (0) = X (1) = 0. 

The eigenfunctions are X0 (x) = A0 = const and Xn (x) = An cos (nπx). 

7.1.3 Type III BCs (Mixed) 

The general Type III BCs are a mixture of Type I and II, for t > 0, 

∂u 
(0, t) + α2u (0, t) = g1 (t) ,α1

∂x 
∂u 

(1, t) + α4u (1, t) = g2 (t) .α3
∂x 
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After separation of variables u (x, t) = X (x) T (t), the associated Sturm-Liouville 

Boundary Value Problem for X (x) is 

′′ X + λX = 0, 

′ α1X (0) + α2X (0) = 0 

′ α3X (0) + α4X (0) = 0 

The associated eigenfunctions depend on the values of the constants α1,2,3,4. 

Example 1. α1 = α4 = 1, α2 = α3 = 0. Then 

′′	 ′ X + λX = 0; X (0) = X (1) = 0 

and the eigenfunctions are Xn = An cos 2n
2 
−1πx . Note: the constant X0 = A0 is not 

an eigenfunction here. 

Example 2. α1 = α4 = 0, α2 = α3 = 1. Then 

′′	 ′ X + λX = 0; X (0) = X (1) = 0 

and the eigenfunctions are Xn = Bn sin 2n
2 
−1πx . Note: the constant X0 = A0 is not 

an eigenfunction here. 

Note: Starting with the BCs in Example 1 and rotating the rod about x = 1/2, 

you’d get the BCs in Example 2. It is not surprising then that under the change of 

variables x̃ = 1−x, Example 1 becomes Example 2, and vice versa. The eigenfunctions 

also possess this symmetry, since 

sin 
2n − 1 

π (1 − x) = (−1)n cos 
2n − 1 

πx . 
2	 2 

Since we can absorb the (−1)n into the constant Bn, the eigenfunctions of Example 

1 become those of Example 2 under the transformation x̃ = 1 − x, and vice versa. 

7.2	 Solving the Heat Problem with Inhomogeneous (time

independent) BCs 

Ref: Guenther & Lee p. 149 

Consider the Heat Problem with inhomogeneous Type I BCs, 

ut = uxx, 0 < x < 1 

u (0, t) = 0, u (1, t) = u1 = const, t > 0, (45) 

u (x, 0) = 0, 0 < x < 1. 
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Directly applying separation of variables u (x, t) = X (x) T (t) is not useful, because 

we’d obtain X (1) T (t) = u1 for t > 0. The strategy is to rewrite the solution u (x, t) 

in terms of a new variable v (x, t) such that the new problem for v has homogeneous 

BCs! 

Step 1. Find the steady-state, or equilibrium solution uE (x), since this by defini

tion must satisfy the PDE and the BCs, 

′′ uE = 0, 0 < x < 1 

uE (0) = 0, uE (1) = u1 = const. 

Solving for uE gives uE (x) = u1x. 

Step 2. Transform variables by introducing a new variable v (x, t), 

v (x, t) = u (x, t) − uE (x) = u (x, t) − u1x. (46) 

Substituting this into the Heat Problem (45) gives a new Heat Problem, 

vt = vxx, 0 < x < 1 

v (0, t) = 0, v (1, t) = 0, t > 0, (47) 

v (x, 0) = −u1x, 0 < x < 1. 

Notice that the BCs are now homogeneous, and the IC is now inhomogeneous. Notice 

also that we know how to solve this - since it’s the basic Heat Problem! Based on our 

work, we know that the solution to (47) is 
∞ � 
� 1 

v (x, t) = Bn sin (nπx) e −n2π2t , Bn = 2 f (x) sin (nπx) dx (48) 
n=1 0 

where f (x) = −u1x. Substituting for f (x) and integrating by parts, we find 
� 1 

Bn = −2u1 x sin (nπx) dx 
0 

�1 � 
x cos (nπx) � 1 1 

= −2u1 − 
nπ � 

x=0 

+ 
nπ 0 

cos (nπx) dx 

2u1 (−1)n 

= (49) 
nπ


Step 3. Transform back to u (x, t), from (46), (48) and (49),


−nu (x, t) = uE (x) + v (x, t) = u1x + 
2u1 

∞ 
(−1)n 

sin (nπx) e 
2π2t . (50) 

π n 
n=1 

The term uE (x) is the steady state and the term v (x, t) is called the transient, since 

it exists initially to satisfy the initial condition but vanishes as t → ∞. You can check 

for yourself by direct substitution that Eq. (50) is the solution to the inhomogeneous 

Heat Problem (45), i.e. the PDE, BCs and IC. 
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7.3 Heat sources 

7.3.1 Derivation 

Ref: Guenther & Lee p. 6 (Eq. 3-3) 

To add a heat source to the derivation of the Heat Equation, we modify the energy 

balance equation to read, 

change of 
heat in from heat out from heat generated 

heat energy of = 
left boundary 

− 
right boundary 

+ 
in segment 

. 

segment in time Δt 

Let Q (x, t) be the heat generated per unit time per unit volume at position x in the 

rod. Then the last term in the energy balance equation is just QAΔxΔt. Applying 

Fourier’s Law (1) gives 

∂u ∂u 
cρAΔxu (x, t + Δt) − cρAΔxu (x, t) = ΔtA −K0 − ΔtA −K0

∂x ∂x x x+Δx 

+QAΔxΔt 

The last term is new; the others we had for the rod without sources. Dividing by 

AΔxΔt and rearranging yields 

∂u ∂u 
u (x, t + Δt) − u (x, t) K0 ∂x x+Δx 

− 
∂x x + 

Q 
= . 

Δt cρ Δx cρ 

Taking the limit Δt, Δx 0 gives the Heat Equation with a heat source, →

∂u ∂2u Q 
= κ + (51) 

∂t ∂x2 cρ 

Introducing non-dimensional variables x̃ = x/l, t̃ = κt/l2 gives 

∂u ∂2u l2Q 
= + (52) 

∂t̃ ∂x̃2 κcρ 

Defining the dimensionless source term q = l2Q/ (κcρ) and dropping tildes gives the 

dimensionless Heat Problem with a source, 

∂u ∂2u 
= + q (53) 

∂t ∂x2 
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7.3.2 Solution method 

Ref: Guenther & Lee p. 147 – 149, Myint-U & Debnath §6.7 (exercises) 

The simplest case is that of a constant source q = q (x) in the rod. The Heat 

Problem becomes, 

ut = uxx + q (x) , 0 < x < 1, (54) 

u (0, t) = b1, u (1, t) = b2, t > 0, 

u (x, 0) = f (x) , 0 < x < 1. 

If q (x) > 0, heat is generated at x in the rod; if q (x) < 0, heat is absorbed. 

The solution method is the same as that for inhomogeneous BCs: find the equi

librium solution uE (x) that satisfies the PDE and the BCs, 

′′ 0 = uE + q (x) , 0 < x < 1, 

uE (0) = b1, uE (1) = b2. 

Then let 

v (x, t) = u (x, t) − uE (x) . 

Substituting u (x, t) = v (x, t) + uE (x) into (54) gives a problem for v (x, t), 

vt = vxx, 0 < x < 1, 

v (0, t) = 0, v (1, t) = 0, t > 0, 

v (x, 0) = f (x) − uE (x) , 0 < x < 1. 

Note that v (x, t) satisfies the homogeneous Heat Equation (PDE) and homogeneous 

BCs, i.e. the basic Heat Problem. Solve the Heat Problem for v (x, t) and then obtain 

u (x, t) = v (x, t) + uE (x). 

Note that things get complicated if the source is time-dependent - we won’t see 

that in this course. 

7.4 Periodic boundary conditions 

Ref: Guenther & Lee p. 189-190; for alternate method, see Guether & Lee p. 149 

and then p. 147 

[Sept 26, 2006] 

Above, we solved the heat problem with inhomogeneous, but time-independent, 

BCs by using the steady-state. We now show how to solve the heat problem with inho

mogeneous, but time-varying, BCs. We consider the heat problem with an oscillatory 
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(and periodic) BC, 

ut = uxx, 0 < x < 1 

u (0, t) = A cos ωt, u (1, t) = 0, t > 0, (55) 

u (x, 0) = f (x) , 0 < x < 1. 

The physical meaning of the BC u (0, t) = A cos ωt is that we keep changing, in a 

periodic fashion, the temperature at the end x = 0 of the rod. 

We don’t expect the solution to be independent of time as t → ∞, since we’re 

changing the temperature periodically at one end. However, we do expect that after 

an initial transient time, the solution will become periodic with angular frequency ω, 

i.e. 

u (x, t) = v (x, t) + A (x) cos (ωt + φ (x)) 

where v (x, t) 0 is the transient, A (x) cos (ωt + φ (x)) is what we call → as t → ∞ 
the quasi-steady state, A (x) and φ (x) are the amplitude and phase of the quasi 

steady state. To solve the problem, the goal is to first find A (x) and φ (x), and then 

v (x, t), if necessary. Often we might not care about the transient state, if we are 

more interested in the solution after ”long times”. 

7.4.1 Complexify the problem 

We use the notation Re {z}, Im {z} to denote the real and imaginary parts of a 

complex number z. Note that 

1 � 
iθ
� 

Re {z} = (z + z ∗ ) , cos θ = Re e 
2 

Im {z} = 
1

(z − z ∗ ) , sin θ = Im 
� 
e iθ
� 

2i 

∗ where asterisks denote the complex conjugate ((x + iy) = x − iy). Thus, we can 

write our quasi-steady solution in terms of complex exponentials, 

A (x) cos (ωt + φ (x)) = Re A (x) e iφ(x)e iωt = Re U (x) e iωt

where, for convenience, we have replaced A (x) eiφ(x) with the complex function U (x). 

We do this because complex exponentials are much easier to work with than cos (ωt) 

and sin (ωt). Note that U (x) has magnitude A (x) = U (x) and phase φ (x) = 
Im{U(x)} 

| |
arctan Re{U(x)} 

. The phase φ (x) delays the effects of what is happening at the end 

of the rod: if the end is heated at time t = t1, the effect is not felt at the center until 

a later time t = φ (1/2) /ω + t1. The following result will be useful. 
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Lemma [Zero sum of complex exponentials] If, for two complex constants a, b, 

we have 

ae iωt + be−iωt = 0 (56) 

for all times t in some open interval, then a = b = 0. 

Proof: Differentiate (56) in time t, 

iω 
� 
ae iωt − be−iωt

� 
= 0. (57) 

Adding (56) to 1/iω×(57) gives 

2ae iωt = 0. 

Since eiωt is never zero (|eiωt| = 1), then a = 0. From (56), be−iωt = 0 and hence 

b = 0. 

Note that we could also use the Wronskian to show this: 

iωt −iωt 

W 
� 
e iωt , e −iωt

� 
= det 

e e
= −2iω = 0 

iωeiωt −iωe−iωt 
�

and hence eiωt and e−iωt are linearly independent, meaning that a = b = 0. 

7.4.2 ODE and ICs for quasi-steady state 

Step 1. Find the quasi-steady state solution to the PDE and BCs of the Heat Problem 

(55) of the form 

uSS (x, t) = Re U (x) e = 
� 

iωt
� 1 � 

U (x) e iωt + U ∗ (x) e −iωt
� 

= A (x) cos (ωt + φ (x)) 
2 

(58) 

where U (x) is a complex valued function. Substituting (58) for u (x, t) into the PDE 

in (55) gives 

1 
iωU (x) e iωt − iωU ∗ (x) e −iωt =

1 
U ′′ (x) e iωt + U ′′∗ (x) e −iωt ,

2 2 

for 0 < x < 1 and t > 0. Multiplying both sides by 2 and re-grouping terms yields 

(iωU (x) − U ′′ (x)) e iωt + (−iωU ∗ (x) − U ′′∗ (x)) e −iωt = 0, 0 < x < 1, t > 0. 

(59) 

Applying the Lemma to (59) gives 

′′ iωU (x) − U (x) = 0 = −iωU ∗ (x) − U ′′∗ (x) (60) 
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Note that the left and right hand sides are the complex conjugates of one another, 

and hence they both say the same thing (so from now on we’ll write one or the other). 

Substituting (58) into the BCs in (55) gives 

1 � � A � � 1 � �

iωt −iωtU (0) e iωt + U ∗ (0) e −iωt = e + e , U (1) e iωt + U ∗ (1) e −iωt = 0,
2 2 2 

(61) 

for t > 0. Grouping the coefficients of e±iωt and applying the Lemma yields 

U (0) = A, U (1) = 0. (62) 

To summarize, the problem for the complex amplitude U (x) of the quasi-steady

state uSS (x, t) is, from (60) and (62), 

′′ U (x) − iωU (x) = 0; U (0) = A, U (1) = 0. (63) 

2Note that (1 + i) = 2i, and hence 

�
�2 

1 2 ω 
iω = (1 + i) ω = (1 + i) . 

2 2 

Therefore, (63) can be rewritten as 

�
�2 

ω′′ U (1 + i) U = 0; U (0) = A, U (1) = 0. (64) − 
2 

7.4.3 Solving for quasi-steady state 

Solving the ODE (64) gives 

ω ω 
U = c1 exp − 

2
(1 + i) x + c2 exp 

2
(1 + i) x (65) 

where c1, c2 are integration constants. Imposing the BCs gives 

ω ω 
A = U (0) = c1 + c2, 0 = U (1) = c1 exp − 

2
(1 + i) + c2 exp 

2
(1 + i) . 

Solving this set of linear equations for the unknowns (c1, c2) and substituting these 

back into gives 

A exp 
��

ω 
2 

� 
(1 + i) 

c1 = �� � � � �

ω ω exp (1 + i) − exp −
� �

(1 + i) 
� 2 2 

A exp ω 
2 

(1 + i) 
c2 = A − c1 = −

exp 
��

ω 
2 

(1 + i) 
�

−
− exp 

� �

ω 
2 

� 
(1 + i)− 
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Figure 4: At left, the magnitude of U(x) (solid) and U(x) (dash). At right, the | |
phase of U(x). 

Substituting these into (65) gives 

�� � � �

ω ω 
� 

(1 +
�

i) (1 − x) 
� 
− exp 

�

−
�

2U = A
 .

ω(1 + i)
 (1 + i)
exp
 − exp −

2

22

Therefore, the quasi-steady-state solution to the heat problem is 

ω 
� � 

ω 
� 

exp (1 + i) (1 − x) (1 + i) (1 − x) 
� 
− exp 

�

−
�

ω ω 
Aeiωt uSS (x, t) = Re .


(1 + i)
 (1 + i)
exp

2

− exp −

2

It is easy to check that uSS (x, t) satisfies the PDE and BCs in (55). Also, note that 

the square of the magnitude of the denominator is 

2 
ω 

(1 + i) 
� 2 

which is greater than zero since ω > 0 and hence cosh
√

2ω > 1 ≥ cos
√

2ω. In Figure 

4, the magnitude and phase of U (x) are plotted as solid lines. The straight dashed 

line is drawn with U (x) for comparison, illustrating that U (x) is nearly linear in x.| | | |
The phase of U (x) is negative, indicating a delay between what happens at a point 

x on the rod and what happens at the end x = 0. 

7.4.4 Solving for the transient 

Step 2. Solve for the transient, defined as before, 

v (x, t) = u (x, t) − uSS (x, t) . (66) 

ω � 
cosh

√
2ω − cos

√
2ω
�exp − exp − (1 + i) = 2 > 0


2
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Substituting (66) into the heat problem (55), given that uSS (x, t) satisfies the PDE 

and BCs in (55), gives the following problem for v (x, t), 

vt = vxx, 0 < x < 1 

v (0, t) = 0, v (1, t) = 0, t > 0,	 (67) 

v (x, 0) = f2 (x) , 0 < x < 1, 

where the initial condition f2 (x) is given by 

f2 (x) = u (x, 0) − uSS (x, 0) 
ω	

� � 
ω 

� 
(1 + i) (1 − x) − exp (1 + i) (1 − x)

2	 2 = f (x) − Re A
exp 

�� � �

−
� � .

ω	 ω exp 
2 

(1 + i) − exp − (1 + i)
2 

The problem for v (x, t) is the familiar basic Heat Problem whose solution is given by 

(25), (24) with f (x) replaced by f2 (x), 

∞	 � 
�	 1 

v (x, t) = Bn sin (nπx) e −n2π2t , Bn = 2 f2 (x) sin (nπx) dx. 
n=1 0 

7.4.5 Full solution 

The full solution to the problem is 

exp 
�

ω 
2 

(1 + i) (1 − x) 
�

� 
− exp 

�

�

−
�

ω 
2 

(1 + i) (1 − x) 
� 

Aeiωt u (x, t) = Re ��

ω	 ω 
� 

exp 
2 

(1 + i) − exp − 
2 

(1 + i) 
∞ 

+	 Bn sin (nπx) e −n2π2t .

n=1


The first term is the quasi-steady state, whose amplitude at each x is constant, plus 

a transient part v (x, t) that decays exponentially as t → ∞. If the IC f (x) were 

given, then we could compute the Bn’s. 

7.4.6 Similar problem: heating/cooling of earth’s surface 

Consider a vertical column in the earth’s crust that is cooled in the winter and heated 

in the summer, at the surface. We take the x-coordinate to be pointing vertically 

downward with x = 0 corresponding to the earth’s surface. For simplicity, we model 

the column of earth by the semi-infinite line 0 ≤ x < ∞. We crudely model the 

heating and cooling at the surface as u (0, t) = A cos ωt, where ω = 2π/τ and the 

(scaled) period τ corresponds to 1 year. Under our scaling, τ = κ× (1 year)/l2 . The 

boundary condition as x → ∞ is that the temperature u is bounded (“∞” is at the 
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bottom of the earth’s crust, still far away from the core, whose effects are neglected). 

What is the quasi-steady state? 

The quasi-steady state satisfies the Heat Equation and the BCs, 

(uSS) = (uSS) , 0 < x < ∞ (68) t xx 

uSS (0, t) = T0 + T1 cos ωt, uSS bounded as x → ∞, t > 0. 

We use superposition: u (x, t) = u0 + u1, where 

(u0)t = (u0)xx , (u1)t = (u1)xx , 0 < x < ∞, t > 0. 

u0 (0, t) = T0, u1 (0, t) = T1 cos ωt, u0, u1 bounded as x → ∞, 

Obviously, u0 (x, t) = T0 works, and by uniqueness, we know this is the only solution 

for u0 (x, t). To solve for u1, we proceed as before and let u1 (x, t) = Re {U (x) eiωt}
to obtain 

′′ U (x) − iωU (x) = 0, 0 < x < ∞ (69) 

U (0) = T1, U bonded as x → ∞, t > 0. 

The general solution to the ODE (69) is 

ω ω 
U = c1 exp − 

2
(1 + i) x + c2 exp 

2
(1 + i) x . 

The boundedness criterion gives c2 = 0, since that term blows up The as x → ∞. 

BC at the surface (x = 0) gives c1 = T1. Hence 

ω 
U = T1 exp − 

2
(1 + i) x . 

Putting things together, we have 

ω 
uSS (x, t) = T0 + Re T1 exp − 

2
(1 + i) x e iωt 

−
√ ωxω 

2 

ω 
2 

= T0 + T1e Re exp −i 
2 

x + iωt


−
√ ωx = T0 + T1e − 

2 
x + ωt . (70)
cos


uSS (x, t) is plotted at various dimensionless times ωt/π = 0, 1/4, 1/2, 3/4, 1 in Figure 
−
√

ω 
2 x5. Dashed lines give the amplitude T0 ±T1e of the quasi-steady-state uSS (x, t). 

Physical questions: What is the ideal depth for a wine cellar? We want the wine 

to be relatively cool compared to the summer temperature and relatively warm to the 
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Figure 5: Plot of uSS (x, t) at various times. Numbers in figure indicate ωt/π. 
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winter temperature, and yet we want the cellar close to the surface (to avoid climbing 

too many stairs). Then we must find the smallest depth x such that the temperature 

uSS (x, t) will be opposite in phase to the surface temperature uSS (0, t). We take 

κ = 2× 10−3 cm2/s and l = 1 m. Recall that the period is 1 year, τ = (κ/l2) (1 year) 

and 1 year is 3.15 × 107 s. From the solution (70), the phase of uSS (x, t) is reversed 

when 
ω 

x = π 
2 

Solving for x gives 

x = π 2/ω 

Returning to dimensional coordinates, we have 

2′ x = lx = lπ τ = πκ (1 year) = π × (2 × 10−3 cm2) × 3.15 × 107 = 4.45 m. 
2π 

At this depth, the amplitude of temperature variation is 

ω x −πT1e 
−
√

2 = T1e ≈ 0.04T1 

Thus, the temperature variations are only 4% of what they are at the surface. And 
′ being out of phase with the surface temperature, the temperature at x = 4.45 m is 

cold in the summer and warm in the winter. This is the ideal depth of a wine cellar. 

Note: for a different solution to this problem using Laplace transforms (not covered 

in this course), see Myint-U & Debnath Example 11.10.5. 

8 Linearity, Homogeneity, and Superposition 

Ref: Myint-U & Debnath §1.1, 1.3, 1.4 

[Sept 28, 2006] 

Definition Linear space: A set V is a linear space if, for any two elements1 v1, 

v2 ∈ V and any scalar (i.e. number) k ∈ R, the terms v1+v2 and kv1 are also elements 

of V . 

E.g. Let S denote the set of functions that are C2 (twice-continuously differen

tiable) in x and C1 (continuously differentiable) in t, for x ∈ [0, 1], t ≥ 0. We write S 
as 

S = {f (x, t) | fxx, ft continuous for x ∈ [0, 1] , t ≥ 0} (71) 

If f1, f2 ∈ S, i.e. f1, f2 are functions that have continuous second derivatives in space 

and continuous derivatives in time, and k ∈ R, then f1 + f2 and kf1 also have the 

1Note that the symbol ∈ means “an element of”. So x ∈ [0, l] means x is in the interval [0, l]. 
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same, and hence are both elements of S. Thus, by definition, S forms a linear space 

over the real numbers R. For instance, f1 (x, t) = sin (πx) e−π2t and f2 = x2 + t3 . 

Definition Linear operator: An operator L : V → W is linear if 

L (v1 + v2) = L (v1) + L (v2) , (72) 

L (kv1) = kL (v1) , (73) 

for all v1, v2 ∈ V, k ∈ R. The first property is the summation property; the second is 

the scalar multiplication property. 

The term “operator” is very general. It could be a linear transformation of vectors 

in a vector space, or the derivative operation ∂/∂x acting on functions. Differential 

operators are just operators that contain derivatives. So ∂/∂x and ∂/∂x + ∂/∂y are 

differential operators. These operators are functions that act on other functions. For 

example, the x-derivative operation is linear on a space of functions, even though the 

functions the derivative acts on might not be linear in x: 

∂ � � ∂ ∂ � �

2 2cos x + x = (cos x) + x . 
∂x ∂x ∂x 

E.g. the identity operator I, which maps each element to itself, i.e. for all elements 

v ∈ V we have I (v) = v. Check for yourself that I satisfies (72) and (73) for an 

arbitrary linear space V . 

E.g. consider the partial derivative operator acting on S (defined in (71)), 

∂u 
= ,D (u)

∂x
u ∈ S. 

From the well-known properties of the derivative, namely 

∂ ∂u ∂v 
(u + v) = + , u, v ∈ S,

∂x ∂x ∂x

∂ ∂u 
(ku) = k , u ∈ S, k ∈ R 

∂x ∂x

it follows that the operator D satisfies properties (72) and (73) and is therefore a 

linear operator. 

E.g. Consider the operator that defines the Heat Equation 

∂ ∂2 

L = 
∂t 

−
∂x2 

and acts over the linear space S of functions C2 in x, C1 in t. The Heat Equation can 

be written as 
∂u ∂2u 

L (u) = 
∂t 

−
∂x2 

= 0. 
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For any two functions u, v ∈ S and a real k ∈ R,


∂ ∂2 

L (u + v) = 
∂t 

−
∂x2 

(u + v) 

∂ ∂2 ∂u ∂2u ∂v ∂2v 
= 

∂t 
(u + v) −

∂x2 
(u + v) = 

∂t 
−

∂x2 
+ 

∂t 
−

∂x2 
= L (u) + L (v) 

∂ ∂2 ∂ ∂2 ∂u ∂2u 
L (ku) = 

∂t 
−

∂x2 
(ku) = 

∂t 
(ku) −

∂x2 
(ku) = k 

∂t 
−

∂x2 
= kL (u) 

Thus, L satisfies properties (72) and (73) and is therefore a linear operator. 

8.1 Linear and homogeneous PDE, BC, IC 

Consider a differential operator L and operators B1, B2, I that define the following 

problem: 

PDE: L (u) = h (x, t) , with 

BC: B1 (u (0, t)) = g1 (t) , B2 (u (1, t)) = g2 (t) 

IC: I (u (x, 0)) = f (x) . 

Definition The PDE is linear if the operator L is linear. 

Definition The PDE is homogeneous if h (x, t) = 0. 

Definition The BCs are linear if B1, B2 are linear. The BCs are homogeneous if 

g1 (t) = g2 (t) = 0. 

Definition The IC is linear if I is a linear. The IC is homogeneous if f (x) = 0. 

8.2 The Principle of Superposition 

The Principle of Superposition has three parts, all which follow from the definition 

of a linear operator: 

(1) If L (u) = 0 is a linear, homogeneous PDE and u1, u2 are solutions, then 

c1u1 + c2u2 is also a solution, for all c1, c2 ∈ R. 

(2) If u1 is a solution to L (u1) = f1, u2 is a solution to L (u2) = f2, and L is 

linear, then c1u1 + c2u2 is a solution to 

L (u) = c1f1 + c2f2, 

for all c1, c2 ∈ R. 

(3) If a PDE, its BCs, and its IC are all linear, then solutions can be superposed 

in a manner similar to (1) and (2). 
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The proofs of (1)-(3) follow from the definitions above. For example, the proof of 

(1) is 

L (c1u1 + c2u2) = L (c1u1) + L (c2u2) 

= c1L (u1) + c2L (u2) = c1 0 + c2 0 = 0· · 

The first step follows from the addition rule of linear operators; the second from the 

scalar multiplication rule, and the third from the fact that u1 and u2 are solutions of 

L (u) = 0. The proofs of parts (2) and (3) are similar. 

E.g. Suppose u1 is a solution to 

L (u) = ut − uxx = 0 

B1 (u (0, t)) = u (0, t) = 0 

B2 (u (1, t)) = u (1, t) = 0 

I (u (x, 0)) = u (x, 0) = 100 

and u2 is a solution to 

L (u) = ut − uxx = 0 

B1 (u (0, t)) = u (0, t) = 100 

B2 (u (1, t)) = u (1, t) = 0 

I (u (x, 0)) = u (x, 0) = 0 

Then 2u1 − u2 would solve 

L (u) = ut − uxx = 0 

B1 (u (0, t)) = u (0, t) = −100 

B2 (u (1, t)) = u (1, t) = 0 

I (u (x, 0)) = u (x, 0) = 200 

To solve L (u) = g with inhomogeneous BCs using superposition, we can solve 

two simpler problems: L (u) = g with homogeneous BCs and L (u) = 0 with inhomo

geneous BCs. 

8.3 Application to the solution of the Heat Equation 

Recall that we showed that un (x, t) satisfied the PDE and BCs. Since the PDE (8) 

and BCs (10) are linear and homogeneous, then we apply the Principle of Superposi

tion (1) repeatedly to find that the infinite sum u (x, t) given in (80) is also a solution, 

provided of course that it can be differentiated term-by-term. 
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9 Uniform convergence, differentiation and inte

gration of an infinite series 

Ref: Guenther & Lee Ch 3 talk about these issue for the Fourier Series, in particular 

uniform convergence p. 50, differentiation and integration of an infinite series on p. 

58 and 59, and the Weirstrauss M-Test on p. 59. 

Ref: Myint-U & Debnath §5.10, 5.13 (problem 12 p. 136) 

The infinite series solution (25) to the Heat Equation (8) only makes sense if it 

converges uniformly2 on the interval [0, 1]. The reason is that to satisfy the PDE, 

we must be able to integrate and differentiate the infinite series term-by-term. This 

can only be done if the infinite series AND its derivatives converge uniformly. The 

following results3 dictate when we can differentiate and integrate an infinite series 

term-by-term. 

Definition [Uniform convergence of a series] The series 

∞ 

fn (x) 
n=1 

of functions fn (x) defined on some interval [a, b] converges if for every ε > 0, there 

exits an N0 (ε) ≥ 1 such that 

� ∞ 
� 

� fn (x)
� < ε, for all N ≥ N0. 

n=N 

Theorem [Term-by-term differentiation] If, on an interval x ∈ [a, b], 

∞ 

1. f (x) = fn (x) converges uniformly, 
n=1 

∞ 

′ 2. fn (x) converges uniformly, 
n=1 
′ 3. fn (x) are continuous, 

then the series may be differentiated term-by-term, 

∞ 

′ ′ f (x) = fn (x) . 
n=1 

2The precise definitions are outlined in §9.4 (optional reading). 
3Proofs of these theorems [optional reading] can be found in any good text on real analysis [e.g. 

Rudin] - start by reading §9.4. 
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Theorem [Term-by-term integration] If, on an interval x ∈ [a, b], 

∞ 

1. f (x) = fn (x) converges uniformly, 
n=1 

2. fn (x) are integrable, 

then the series may be integrated term-by-term, 

� b ∞ � b 

f (x) dx = fn (x) dx. 
a an=1 

Thus, uniform convergence of an infinite series of functions is an important prop

erty. To check that an infinite series has this property, we use the following tests in 

succession (examples to follow): 

Theorem [Weirstrass M-Test for uniform convergence of a series of functions] 

Suppose {fn (x)} ∞ is a sequence of functions defined on an interval [a, b], and supn=1 

pose 

|fn (x)| ≤ Mn (x ∈ [a, b] , n = 1, 2, 3, ...). 

Then the series of functions 
�∞ 

n=1 fn (x) converges uniformly on [a, b] if the series of 
�∞numbers n=1 Mn converges absolutely. 

�∞Theorem [Ratio Test for convergence of a series of numbers] The series n=1 an 

converges absolutely if the ratio of successive terms is less than a constant r < 1, i.e. 

|an+1| 
r < 1, (74) |an|

≤

for all n ≥ N ≥ 1. 

Note: N is present to allow the first N − 1 terms in the series not to obey the 

ratio rule (74). 

Theorem [Convergence of an alternating series] Suppose 

1. a0 a1 a2| | ≥ | | ≥ | | ≥ · · · 
2. a2n−1 ≥ 0, a2n ≤ 0 (n = 1, 2, 3 . . .) 

3. limn→∞ an = 0 

then the sum 
∞ 

an 

n=1 

converges. 

Note: This is not an absolute form of convergence, since the series 
�∞ (−1)n /n n=1 

�∞converges, but n=1 1/n does not. 
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9.1 Examples for the Ratio Test 

E.g. Consider the infinite series of numbers 

∞ � �n 
� 1 

(75) 
2 

n=1 

Writing this as a series 
�∞ 

n=1 an, we identify an = (1/2)n . We form the ratio of 

successive elements in the series, 

an+1 (1/2)n+1 1 
< 1

|
|an|

|
= 

(1/2)n =
2 

Thus, the infinite series (75) satisfies the requirements of the Ratio Test with r = 1/2, 

and hence (75) converges absolutely. 

E.g. Consider the infinite series 

∞ 
� 1 

(76) 
n 

n=1 

�∞Writing this as a series n=1 an, we identify an = 1/n. We form the ratio of successive 

elements in the series, 
|an+1| 1/ (n + 1) n 

= = |an| 1/n n + 1 

Note that limn→∞ 
n = 1, and hence there is no upper bound r < 1 that is greater 

n+1 

than an+1 / an for ALL n. So the Ratio Test fails, i.e. it gives no information. It | | | |
turns out that this series diverges, i.e. the sum is infinite. 

E.g. Consider the infinite series 

∞ 
� 1 

(77) 
2n

n=1 

Again, writing this as a series 
�∞ 

n=1 an, we identify an = 1/n2 . We form the ratio of 

successive elements in the series, 

|an+1|
=

1/ (n + 1)2 

= 
n2

2|an| 1/n2 (n + 1)

2nNote again that limn→∞ (n+1)2 = 1, and hence there is no r < 1 that is greater than 

|an+1| / |an| for ALL n. So the Ratio Test gives no information again. However, it 

turns out that this series converges: 

∞ 
� 1 π2 

= 
n2 6 

n=1 

41




� 

� � 

So the fact that the Ratio Test fails does not imply anything about the convergence 

of the series! 

Note that the infinite series 
∞ 
� 1 

(78) 
np 

n=1 

converges for p > 1 and diverges (is infinite) for p ≤ 1. 

9.2 Examples of series of functions 

Note, 
∞ 

sin (nπx) 
n=1 

does not converge at certain points in [0, 1], and hence it cannot converge uniformly 

on the interval. In particular, at x = 1/2, we have 

∞ ∞ 
� � 

� � nπ 
sin (nπx) = sin 

2 
= 1 + 0 − 1 + 0 + 1 + 0 − 1 + · · · 

n=1 n=1 

The partial sums (i.e. sums of the first n terms) change from 1 to 0 forever. Thus the 

sum does not converge, since otherwise the more terms we add, the closer the sum 

must get to a single number. 

Consider 
∞ 
� sin (nπx) 

(79) 
2n

n=1 
�∞Since the n’th term is bounded in absolute value by 1/n2, and since n=1 1/n

2 con

verges (absolutely), then the Weirstrass M-Test says the sum (79) converges uniformly 

on [0, 1]. 

9.3 Application to the solution of the Heat Equation 

Ref: Guenther & Lee p. 145 – 147 

We now use the Weirstrass M-Test and the Ratio Test to show that the infinite 

series solution (25) to the Heat Equation converges uniformly, 

∞ ∞ 

u (x, t) = un (x, t) = Bn sin (nπx) e −n2π2t , (80) 
n=1 n=1 

for all positive time, i.e. t ≥ t0 > 0, and space x ∈ [0, 1], provided the initial condition 

f (x) is piecewise continuous. 
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� � 

� � 
� � 
� � 

� � 
� � 

� 

To apply the M-Test, we need bounds on un (x, t) ,| |

|un (x, t)| = 
�

� Bn sin (nπx) e −n2π2t 
�

� ≤ |Bn| e −n2π2t0 , for all x ∈ [0, 1] . (81) 

We now need a bound on the Fourier coefficients |Bn|. Note that from Eq. (24), 

� 1 � 1 � 1 

|Bm| = 
� 2 

0 

sin (mπx) f (x) dx 
� ≤ 2 

0 

|sin (mπx) f (x)| dx ≤ 2 
0 

|f (x)| dx, (82) 

for all x ∈ [0, 1]. To obtain the inequality (82), we used the fact that |sin (mπx)| ≤ 1 

and, for any integrable function h (x), 

� b � b 

� h (x) dx � h (x) dx. 
� � ≤ | |

a a 

You’ve seen this integral inequality, I hope, in past Calculus classes. We combine (81) 

and (82), to obtain 

|un (x, t)| ≤ Mn (83) 

where 
�
� 1 � 

Mn = 2 f (x) dx e −n2π2t0 . 
0 

| |

To apply the Weirstrass M-Test, we first need to show that the infinite series of 

numbers 
�∞ 

n=1 Mn converges absolutely (we will use the Ratio Test). Forming the 

ratio of successive terms yields 

Mn+1 e−(n+1)2π2t0 
(n2−(n+1)2)π2t0 −(2n+1)π2t0 −π2t0 

Mn 

= 
e

= e = e ≤ e < 1, n = 1, 2, 3, ... 
−n2π2t0 

Thus, by the Ratio Test with r = e−π2t0 < 1, the sum 

∞ 

Mn 

n=1 

�∞converges absolutely, and hence by Eq. (81) and the Weirstrass M-Test, n=1 un (x, t) 

converges uniformly for x ∈ [0, 1] and t ≥ t0 > 0. 

A similar argument holds for the convergence of the derivatives ut and uxx. Thus, 

for all t ≥ t0 > 0, the infinite series (80) for u may be differentiated term-by-term 

and since each un (x, t) satisfies the PDE and BCs, then so does u (x, t). Later, after 

considering properties of Fourier Series, we will show that u converges even at t = 0 

(given conditions on the initial condition f (x)). 
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9.4 Background [optional] 

[Note: You are not responsible for the material in this subsection 9.4 - it is only added 

for completeness] 

Ref: Chapters 3 & 7 of “Principles of Mathematical Analysis”, W. Rudin, McGraw-

Hill, 1976. 

Definition Convergence of a series of numbers: the series of real numbers
 ∞ 
n=1 an 

converges if for every ε > 0, there is an integer N such that for any n ≥ N , 
∞ 

� am� < ε. 
m=n 

Definition Absolute convergence of a series of numbers: the series of real numbers 
∞ 
n=1 an is said to converge absolutely if the series ∞ |an| converges.
n=1 

Definition Uniform convergence of a sequence of functions: A sequence of func

tions {fn (x)}
f (x) if for every ε 

∞ defined on a subset E ⊆ R converges uniformly on E to a function
n=1 

> 0 there is an integer N such that for any n ≥ N , 

|fn (x) − f (x)| < ε 

for all x ∈ E. 

Note: pointwise convergence does not imply uniform convergence, i.e. in the 

definition, for each ε, one N works for all x in E. For example, consider the sequence 

of functions {xn ∞ 
n=1 } on the interval [0, 1]. These converge pointwise to the function


f (x) =	
0, 0 ≤ x < 1, 

1, x = 1 

on [0, 1], but do not converge uniformly.


Definition Uniform convergence of a series of functions: A series of functions

∞ 
n=1 fn (x) defined on a subset E ⊆ R converges uniformly on E to a function g (x) 

if the partial sums 
m 

sm (x) = fn (x) 
n=1 

converge uniformly to g (x) on E. 

Consider the following sum, 

∞
cos (nπx)


n 
n=1 

does converge, but this is a weaker form of convergence (pointwise, not uniform or 

absolute), by the Alternating Series Test (terms alternate in sign, absolute value of 

the terms goes to zero as n → ∞). Consult Rudin for the Alternating Series Test, if 

desired. 
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