Problems for the 1-D Wave Equation

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2004

1 Problem 1

(i) Generalize the derivation of the wave equation where the string is subject to a damping force $-b \partial u / \partial t$ per unit length to obtain

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}-2 k \frac{\partial u}{\partial t} \tag{1}
\end{equation*}
$$

All variables will be left in dimensional form in this problem to make things a little different. How is the constant k related to b ? What are the dimensions of b and k ? The constant 2 is included for later convenience.
(ii) Use separation of variables to find the normal modes of the damped Wave Equation (1) subject to the BCs

$$
u(0, t)=0=u(l, t)
$$

Impose a restriction on the parameters c, l, k which will guarantee that all solutions are oscillatory in time. You may assume that the eigenvalues and eigenfunctions are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}}, \quad X_{n}(x)=\sin \frac{n \pi x}{l}, \quad n=1,2,3 \ldots
$$

(iii) Express the frequency \widetilde{f}_{n} of the oscillatory part of the n 'th normal mode in terms of the frequency of the undamped mode $f_{n}=n c /(2 l)$. What difference does the damping make?
(iv) Show that the solution of the damped wave equation subject to the BCs (1) and the initial condition

$$
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=0
$$

is given by

$$
u(x, t)=e^{-k t} \sum_{n=1}^{\infty}\left(\alpha_{n} \cos \left(2 \pi \widetilde{f}_{n} t\right)+\beta_{n} \sin \left(2 \pi \widetilde{f}_{n} t\right)\right) \sin \left(\frac{n \pi x}{l}\right)
$$

Express the constants α_{n}, β_{n} in terms of the Fourier Sine coefficients B_{n} of f.

2 Problem 2

Prove that if a vibrating string is damped, i.e. subject to the PDE in Problem 1(i), then the energy $E(t)$ is monotone decreasing. You may use the formula we derived in lecture,

$$
E(t)=\frac{\rho}{2} \int_{0}^{l}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x
$$

3 Problem 3

(i) Suppose that an "infinite string" has an initially displacement

$$
u(x, 0)=f(x)=\left\{\begin{array}{cc}
x+1, & -1 \leq x \leq 0 \\
-x+1, & 0 \leq x \leq 1 \\
0, & |x|>1
\end{array}\right.
$$

and zero initial velocity $u_{t}(x, 0)=0$. Write down the solution of the wave equation

$$
u_{t t}=u_{x x}
$$

with ICs $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$ using D'Alembert's formula. Illustrate the nature of the solution by sketching the $u x$-profiles $y=u(x, t)$ of the string displacement for $t=$ $0,1 / 2,1,3 / 2$.
(ii) Repeat the procedure in (i) for a string that has zero initial displacement but is given an initial velocity

$$
u_{t}(x, 0)=g(x)= \begin{cases}2, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

4 Problem 4

(i) For an infinite string (i.e. we don't worry about boundary conditions), what initial conditions would give rise to a purely forward wave? Express your answer in terms of the
initial displacement $u(x, 0)=f(x)$ and initial velocity $u_{t}(x, 0)=g(x)$ and their derivatives $f^{\prime}(x), g^{\prime}(x)$. Interpret the result intuitively.
(ii) Again for an infinite string, suppose that $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$ are zero for $|x|>\varepsilon$. Prove that if $t+x>\varepsilon$ and $t-x>\varepsilon$, then the displacement $u(x, t)$ of the string is constant. Relate this constant to $g(x)$.

5 Problem 5

(i) Let $\bar{g}: \mathbb{R} \rightarrow \mathbb{R}$ be the odd periodic extension of $g:[0,1] \rightarrow \mathbb{R}$, where g is smooth $\left(g^{\prime}(x)\right.$ is continuous). Verify that

$$
u(x, t)=\frac{1}{2} \int_{x-t}^{x+t} \bar{g}(s) d s, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

is a solution of the vibrating string problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}} ; \quad u(0, t)=0=u(1, t), \quad t \geq 0 \\
u(x, 0) & =0, \quad \frac{\partial u}{\partial x}(x, 0)=g(x), \quad 0 \leq x \leq 1
\end{aligned}
$$

(ii) If $g(x)=2 \varepsilon x(1-x), 0 \leq x \leq 1$, find the displacement of the string $u(x, t)$ at $x=1 / 4$ when $t=3 / 2$.

6 Problem 6

Consider a semi-infinite vibrating string. The vertical displacement $u(x, t)$ satisfies

$$
\begin{align*}
u_{t t} & =u_{x x}, \quad x \geq 0, \quad t \geq 0 \\
u(0, t) & =0, \quad t \geq 0 \tag{2}\\
u(x, 0) & =f(x), \quad u_{t}(x, 0)=g(x), \quad x \geq 0
\end{align*}
$$

(a) Show that D'Alembert's formula solves (2) when $f(x)$ and $g(x)$ are extended to be odd functions.
(b) Let

$$
f(x)=\left\{\begin{array}{cc}
\sin ^{2}(\pi x), & 1 \leq x \leq 2 \\
0, & 0 \leq x \leq 1, \quad x \geq 2
\end{array}\right.
$$

and $g(x)=0$ for $x \geq 0$. Sketch u vs. x for $t=0,1,2,3$.

7 Problem 7

The acoustic pressure in an organ pipe obeys the 1-D wave equation (in physical variables)

$$
p_{t t}=c^{2} p_{x x}
$$

where c is the speed of sound in air. Each organ pipe is closed at one end and open at the other. At the closed end, the BC is that $p_{x}(0, t)=0$, while at the open end, the BC is $p(l, t)=0$, where l is the length of the pipe.
(a) Use separation of variables to find the normal modes $u_{n}(x, t)$.
(b) Give the frequencies of the normal modes and sketch the pressure distribution for the first two modes.
(c) Given initial conditions $p(x, 0)=f(x)$ and $p_{t}(x, 0)=g(x)$, write down the general initial boundary value problem ($\mathrm{PDE}, \mathrm{BCs}, \mathrm{ICs}$) for the organ pipe and determine the series solutions.

