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Solutions to Assignment 2: Asymptotic Series and WKB

Provided by Mustafa Sabri Kilic

1. (Chapter 6, Problem 8)Find the entire asymptotic series for the solutions
of the following ODE:

(a) xy00 + (c− x)y0 − ay = 0 (confluent hypergeometric equation)
(b) x(1− x)y00 + [c− (a+ b+ 1)x]y0 − aby = 0. (hypergeometric equation)
(c) y00 − (x4 − 3

16
x−2)y = 0.

(d) y00 +(x2 + 3
16
x−2)y = 0.

(e) y00 + (ν + 1
2
− 1

4
x2)y = 0, ν a constant. (parabolic cylinder equation)

Solution:
Prelimenaries: pages 172-177 in the book.

(a) Since x =∞ is an irregular singular point of rank 1, we first make the change of variables

y = eAxY

which leads to D→ D +A, and the ODE becomes

[(D +A)2 + (
c

x
− 1)(D +A)− a

x
]Y = 0

or
{D2 + [2A+

c

x
− 1]D + [A( c

x
− 1) +A2 − a

x
]}Y = 0 (1)

With t = 1
x
, we need to find A such that the term 1

t4
d(1

t
) (here d refers to the coefficient

of y in the original ODE, to see where this comes from, refer to page 177 in the book)
does not have a pole of order higher that (k+2) = 3. So we need to have the function
d(1

t
) = Act−A+A2− at to have a factor of t, which is possible if −A+A2 = 0. Then

either A = 0 or A = 1. Each case will be treated separately. First, let us take A = 0.
We plug

Y =
∞X

n=−∞
anx

−n−s (2)

(in this case y = Y ) into the ODE to obtain

∞X
n=−∞

[(n+ s)(n+ s+ 1)− c(n+ s)]anx−n−s−1 +
∞X

n=−∞
[(n+ s)− a]anx−n−s = 0

which leads to, after making n→ n− 1 in the first summation,
(n+ s− a)an + (n+ s− 1)(n+ s− c)an−1 = 0

Letting n = 0, we find that s = a. Rewriting,

an = −(n+ s− 1)(n+ s− c)
(n+ s− a) an−1
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Thus

an = (−1)nΓ(n+ a)Γ(n+ 1 + a− c)
n!Γ(a)Γ(a− c+ 1)

one solution is
y1(x)= x−a

P∞
n=0(−1)n Γ(n+a)Γ(n+1+a−c)n!

x−n

To find the other solution, we let A = 1 in (1), and obtain

[D2 + (1 +
c

x
)D +

c− a
x
]Y = 0

Again, we plug in (2) into this last equation, to obtain

∞X
n=−∞

[(n+ s)(n+ s+ 1)− c(n+ s)]anx−n−s−2 +
∞X

n=−∞
[−(n+ s) + c− a]anx−n−s−1 = 0

which gives us, with n→ n− 1 in the first summation, that

(n− 1 + s)(n+ s− c)an−1 − (n+ s− c+ a)an = 0

Letting n = 0, we find that s = c− a. Putting this into the last formula, we have

an =
(n− 1 + c− a)(n− a)

n
an−1

which gives

an =
Γ(n+ c− a)Γ(n+ 1− a)
n!Γ(c− a)Γ(1− a) an−1

Thus, the second solution is

y2(x)= xa−cex
P∞

n=0
Γ(n+c−a)Γ(n+1−a)

n!
x−n

The general solution is

y(x)=C1x−a
P∞

n=0(-1)
n Γ(n+a)Γ(n+1+a−c)

n!
x−n+C2xa−cex

P∞
n=0

Γ(n+c−a)Γ(n+1−a)
n!

x−n

where C1 and C2 are arbitrary constants. Note that series for both of the solutions are
asymptotic series, they converge nowhere.

(b) Since x =∞ is a regular singular point, we directly plug in the series (2) into the ODE
in question to obtain

∞X
n=−∞

(n+s)(n+s+1−c)anx−n−s−1+
∞X

n=−∞
[−(n+s)(n+s+1)+(a+b+1)(n+s)−ab]anx−n−s = 0

After making n→ n− 1 in the first summation, we obtain

(n+ s− a)(n+ s− b)an = (n− 1 + s)(n+ s− c)an−1
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Letting n = 0, we find that either s = a, or s = b. Rewriting the above formula

an =
(n− 1 + s)(n+ s− c)
(n+ s− a)(n+ s− b)an−1

which gives

an =
Γ(n+ s)Γ(n+ 1 + s− c)

Γ(n+ 1 + s− a)Γ(n+ 1 + s− b)
Γ(1 + s− a)Γ(1 + s− b)

Γ(s)Γ(1 + s− c) a0

Thus the general solution is

y=C1x−a
P∞

n=0
Γ(n+a)Γ(n+1+a−c)
n!Γ(n+1+a−b) x−n+C2x−b

P∞
n=0

Γ(n+b)Γ(n+1+b−c)
n!Γ(n+1+b−a) x−n

where C1 and C2 are arbitrary constants. Note that those series are convergent for
|x| > 1.

(c) Since x =∞ is an irregular singular point of rank 3, we seek a coordinate transformation
of the form

y = eA1x
3+A2x2+A3xY

which will transform the ODE into a form in which the coeefficent of Y does not have a
pole of order higher than (k+2) = 5. In other words, after transformation the quantity
1
t4
d(1

t
) should not have a pole of order higher than 5, which means d(1

t
) should not

have any poles of order higher than 1 at t = 0. The ODE for Y is

[(D + 3x2A1 + 2xA2 +A3)
2 − x4 + 3

16
x−2]Y = 0

⇒

{D2+[6x2A1+4xA2+2A3]D+[(9A
2
1−1)x4+12A1A2x3+(3A1A3+4A22)x2+(4A2A3+6A1)x+(A23+2A2)+

We see that we need to do is to eliminate the x4, x3, x2 terms in the coeefficient of Y.
This can easily be done by letting 9A21 − 1 = 0, A2 = A3 = 0. Hence there are two
cases, namely A1 = ±1

3
.

Let’s first analyze A1 = 1
3
. Then indeed the ODE becomes

[D2 + 2x2D + 2x+
3

16
x−2]Y = 0

which has d(1
t
) = 21

t
+ 3

16
t2. This last quantity has no poles of order higher than 1,

verifying our earlier remark.

Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

∞X
n=−∞

[(n+ s)(n+ s+ 1) +
3

16
]| {z }

(n+s+ 1
4
)(n+s+ 3

4
)

anx
−n−s−2 +

∞X
n=−∞

[−2(n+ s) + 2]anx−n−s+1 = 0
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Making n→ n− 3 in the first summation, we obtain

2(n+ s− 1)an + (n− 3 + s+ 1
4
)(n− 3 + s+ 3

4
)an−3 = 0

Letting n = 0 gives that s = 1. Using this, we rewrite the above formula with n = 3m,
we obtain

a3m =
3(m− 7

12
)(m− 5

12
)

2m
a3(m−1)

Thus the one of the solutions which is valid for |x| >> 1 is

y1(x)=x−1e
1
3
x3
P∞

n=0(
3
2
)n Γ(n+

5
12
)Γ(n+ 7

12
)

n!
x−3n

For the case when we take A1 = −13 , our ODE is

[D2 − 2x2D − 2x+ 3

16
x−2]Y = 0

Plugging in (2) into the ODE. This gives us

∞X
n=−∞

[(n+ s)(n+ s+ 1) +
3

16
]| {z }

(n+s+ 1
4
)(n+s+ 3

4
)

anx
−n−s−2 +

∞X
n=−∞

[2(n+ s)− 2]anx−n−s+1 = 0

Making n→ n− 3 in the first summation, we obtain

2(n+ s− 1)an + (n− 3 + s+ 1
4
)(n− 3 + s+ 3

4
)an−3 = 0

Letting n = 0 gives that s = 1. Using this and rewriting the above formula with
n = 3m, we obtain

a3m = −
3(m− 7

12
)(m− 5

12
)

2m
a3(m−1)

Thus the second solution which is valid for |x| >> 1 is

y2(x)=x−1e−
1
3
x3
P∞

n=0(-
3
2
)n Γ(n+

5
12
)Γ(n+ 7

12
)

n!
x−3n

The general solution is a linear combination of those two solutions. Note that both
series are convergent nowhere.

(d) Since x =∞ is an irregular singular point of rank 2, we seek a coordinate trans-
formation of the form

y = eA1x
2+A2xY

which will transform the ODE into a form in which the coeefficent of Y does not
have a pole of order higher than (k+2) = 4. In other words, after transformation
the quantity 1

t4
d(1

t
) should not have a pole of order higher than 4, which means

d(1
t
) should not have any poles at t = 0. The ODE for Y is

[(D + 2xA1 +A2)
2 + x2 +

3

16
x−2]Y = 0
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or
[D2 + 4xA1D + 2A1 + 4x

2A21 + 4xA1A2 +A
2
2 + x

2 +
3

16
x−2]Y = 0

We need to do is to eliminate the x2 and x terms in the coefficient of Y. This can
easily be done by letting 4A21 + 1 = 0, A2 = 0. Let’s choose A1 = ±1

2
i, A2 = 0.

Then indeed the ODE becomes

[D2 ± 2xiD ± i+ 3

16
x−2]Y = 0

which has d(1
t
) = ±i+ 3

16
t2. This last quantity has no poles, as we wished.

Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

∞X
n=−∞

[(n+ s)(n+ s+ 1) +
3

16
]anx

−n−s−2 ± i
∞X

n=−∞
[−2(n+ s) + 1]anx−n−s = 0

Making n→ n− 2 in the first summation, we obtain

±ian(−2(n+ s) + 1) + (n− 2 + s+ 1
4
)(n− 2 + s+ 3

4
)an−2 = 0

Letting n = 0 gives that s = 1
2
(in both cases). Rewriting the above formula, we have

an = ±i
(n− 5

4
)(n− 3

4
)

2n
an−2

With n = 2m, the above formula is

a2m = ±i
(m− 5

8
)(m− 3

8
)

m
a2(m−1)

Thus the general solution which is valid for |x| >> 1 is

y = C1x
−1
2 e

1
2
ix2

∞X
n=0

(i)−n
Γ(n+ 3

8
)Γ(n+ 5

8
)

n!
x−2n+C2x−

1
2 e−

1
2
ix2

∞X
n=0

(i)n
Γ(n+ 3

8
)Γ(n+ 5

8
)

n!
x−2n

where C1 and C2 are arbitrary constants. The second solution can also be obtained
by taking the complex conjugate of the first solution. Note that both series converge
nowhere.

(e) Since x =∞ is an irregular singular point of rank 2, we seek a coordinate transformation
of the form

y = eA1x
2+A2xY

which will transform the ODE into a form in which the coeefficent of Y does not have a
pole of order higher than (k+2) = 4. In other words, after transformation the quantity
1
t4
d(1

t
) should not have a pole of order higher than 4, which means d(1

t
) should not

have any poles at t = 0. The ODE for Y is

[(D + 2xA1 +A2)
2 + ν +

1

2
− 1
4
x2]Y = 0

5



or
[D2 + 4xA1D + 2A1 + 4x

2A21 + 4xA1A2 +A
2
2 −

1

4
x2]Y = 0

We see that the only thing we need to do is to eliminate the x2 and x terms in the
coefficient of Y. This can easily be done by letting 4A21 − 1

4
= 0, A2 = 0.

Let’s proceed with A1 = ±1
4
. Then indeed the ODE becomes

[D2 ± xD + ν +
1

2
± 1
2
]Y = 0

which has d(1
t
) = ν + 1

2
± 1

2
. This last quantity has no poles, as we wished.

Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

∞X
n=−∞

(n+ s)(n+ s+ 1)anx
−n−s−2 +

∞X
n=−∞

[∓(n+ s) + ν +
1

2
± 1
2
]anx

−n−s = 0

Making n→ n− 2 in the first summation, we obtain

(∓(n+ s) + ν +
1

2
± 1
2
)an + (n− 2 + s)(n− 1 + s)an−2 = 0

Letting n = 0, we find that s = ±ν + 1
2
± 1

2
. Rewriting the above formula

an = −(n− 2 + s)(n− 1 + s)∓(n+ s) + ν + 1
2
± 1

2

an−2

With n = 2m, the above formula is

a2m = −(2m− 2 + s)(2m− 1 + s)∓(2m+ s) + ν + 1
2
± 1

2

a2(m−1) = −2
(m+ s−2

2
)(m+ s−1

2
)

[∓m+ 1
2
(∓s+ ν + 1

2
± 1

2
)]
a2(m−1)

Hence for upper (+) case: s = ν + 1, and

a2m = 2
(m+ ν−1

2
)(m+ ν

2
)

m
a2(m−1) = 2m

Γ(m+ ν+1
2
)Γ(m+ ν+2

2
)

m!Γ(ν−1
2
)Γ(ν

2
)

a0

and for the lower (−) case: s = −ν, and

a2m = −2
(m− ν+2

2
)(m− ν+1

2
)

m+ 1
2

a2(m−1) = (−2)m
Γ(m− ν

2
)Γ(m− ν−1

2
)Γ(1

2
)

Γ(m+ 3
2
)Γ(−ν

2
)Γ(−ν+1

2
)
a0

Thus the general solution which is valid for |x| >> 1 is

y = C1e
1
4
x2x−ν−1

∞X
n=0

2n
Γ(n+ ν+1

2
)Γ(n+ ν+2

2
)

n!
x−2n+C2e−

1
4
x2xν

∞X
n=0

(−2)nΓ(n−
ν
2
)Γ(n− ν−1

2
)

n!
x−2n

where C1 and C2 are arbitrary constants. Note that both series are asymptotic series,
they converge nowhere.
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2. (Chapter 7,Problem 1) Show that the Wronskian of y+WKB and y
−
WKB given by

(7.5) is a constant.

Solution:

The Wronskian is defined to be

W = y1y
0
2 − y01y2

where, in our case,

y1 = y+WKB =
1p
p(x)

ei
R
p(x)dx (3)

y2 = y−WKB =
1p
p(x)

e−i
R
p(x)dx

We differentiate those to find

(y±WKB)
0 = [±ip(x)− 1

2p(x)
]y±WKB

Thus

W = y+WKBy
−
WKB[−ip(x)−

1

2p(x)
]− [ip(x)− 1

2p(x)
]y+WKBy

−
WKB

= −2ip(x)y+WKBy
−
WKB

= −2ip(x) 1p
p(x)

ei
R
p(x)dx 1p

p(x)
e−i

R
p(x)dx = −2i = constant

3. The WKB solutions (3) can also be derived by putting

y = eiS

(a) Substitute WKB solutions into y00 + p2y = 0 and show that

iS00 − (S0)2 + p2 = 0
which is a nonlinear ODE.

(b) If p(x) is of the form
p(x) = λP (x)

give a reason which suggests that we may drop the term iS00 in the equation
above and obtain

(S0)2 − p2 = 0
This equation is known as Hamilton-Jacobi equation.

(c) Show that the Hamilton-Jacobi equation yields the solutions e±i
R
p(x)dx.

(d) Obtain the additional factor 1√
p(x)

in the WKB solutions by going to the

next-order approximation.

Solution:
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(a)

y = eiS

y0 = iS0eiS

y00 = iS00eiS − (S0)2eiS

Plugging those in, we obtain

iS00eiS − (S0)2eiS + p2eiS = [iS00 − (S0)2 + p2]eiS = 0
Hence, if y 6= 0,

iS00 − (S0)2 + p2 = 0 (4)

(b) We don’t know what S is, in the first place. So how can one show that the term iS00

can be dropped, that is, it is negligible.The strategy is that we neglect the term iS00,
and solve for S. After then, we turn back, and check if we did something sensible with
neglecting iS00.

Solving
(S0)2 − λ2P 2 = 0

we obtain

S = ±λ
Z
P (x)dx = O(λ) (5)

Hence

S0 = λP (x)

S00 = λP 0(x)

Thus
1

λ
(i
1

λ
S)00| {z }

O( 1
λ
)

− ( 1
λ
S0)2| {z }
O(1)

+ P 2|{z}
O(1)

= 0

Hence, the solution S given by (5) almost satisfies the given equation. So the term iS00

is negligible-compared with (S0)2.

(c) Putting (5) into y = eiS, we obtian y = e±i
R
p(x)dx.

(d) Let

S = ±λ
Z
P (x)dx+Q(x)

where Q(x) is the next-order correction to S.Then

S0 = ±λP (x) +Q0(x)
S00 = ±λP 0(x) +Q00(x)

Plugging those into (4), we obtain

−λP 0 − λ2P 2 − 2iλPQ0 + (Q0)2 + λ2P 2 = 0
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or
P 0 + 2iPQ0 =

1

λ
(Q0)2

Neglecting the right-hand side of the last equation, we obtain

Q0 = i
1

2

P 0

P

This integrates to give us
Q = i lnP

Thus

y = eiS = ei[±λ
R
P (x)dx+Q(x)]

= e±i
R
p(x)dx− 1

2
ln p

=
1p
p(x)

e±i
R
p(x)dx

Q.E.D.
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