Solutions to Assignment 2: Asymptotic Series and WKB
 Provided by Mustafa Sabri Kilic

1. (Chapter 6, Problem 8)Find the entire asymptotic series for the solutions of the following ODE:
(a) $x y^{\prime \prime}+(c-x) y^{\prime}-a y=0$ (confluent hypergeometric equation)
(b) $x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$. (hypergeometric equation)
(c) $y^{\prime \prime}-\left(x^{4}-\frac{3}{16} x^{-2}\right) y=0$.
(d) $y^{\prime \prime}+\left(x^{2}+\frac{3}{16} x^{-2}\right) y=0$.
(e) $y^{\prime \prime}+\left(\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right) y=0, \nu$ a constant. (parabolic cylinder equation)

Solution:

Prelimenaries: pages 172-177 in the book.
(a) Since $x=\infty$ is an irregular singular point of rank 1, we first make the change of variables

$$
y=e^{A x} Y
$$

which leads to $D \rightarrow D+A$, and the ODE becomes

$$
\left[(D+A)^{2}+\left(\frac{c}{x}-1\right)(D+A)-\frac{a}{x}\right] Y=0
$$

or

$$
\begin{equation*}
\left\{D^{2}+\left[2 A+\frac{c}{x}-1\right] D+\left[A\left(\frac{c}{x}-1\right)+A^{2}-\frac{a}{x}\right]\right\} Y=0 \tag{1}
\end{equation*}
$$

With $t=\frac{1}{x}$, we need to find A such that the term $\frac{1}{t^{4}} d\left(\frac{1}{t}\right)$ (here d refers to the coefficient of y in the original ODE, to see where this comes from, refer to page 177 in the book) does not have a pole of order higher that $(k+2)=3$. So we need to have the function $d\left(\frac{1}{t}\right)=$ Act $-A+A^{2}-a t$ to have a factor of t, which is possible if $-A+A^{2}=0$. Then either $A=0$ or $A=1$. Each case will be treated separately. First, let us take $A=0$. We plug

$$
\begin{equation*}
Y=\sum_{n=-\infty}^{\infty} a_{n} x^{-n-s} \tag{2}
\end{equation*}
$$

(in this case $y=Y$) into the ODE to obtain

$$
\sum_{n=-\infty}^{\infty}[(n+s)(n+s+1)-c(n+s)] a_{n} x^{-n-s-1}+\sum_{n=-\infty}^{\infty}[(n+s)-a] a_{n} x^{-n-s}=0
$$

which leads to, after making $n \rightarrow n-1$ in the first summation,

$$
(n+s-a) a_{n}+(n+s-1)(n+s-c) a_{n-1}=0
$$

Letting $n=0$, we find that $s=a$. Rewriting,

$$
a_{n}=-\frac{(n+s-1)(n+s-c)}{(n+s-a)} a_{n-1}
$$

Thus

$$
a_{n}=(-1)^{n} \frac{\Gamma(n+a) \Gamma(n+1+a-c)}{n!\Gamma(a) \Gamma(a-c+1)}
$$

one solution is

$$
y_{1}(x)=x^{-a} \sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma(n+a) \Gamma(n+1+a-c)}{n!} x^{-n}
$$

To find the other solution, we let $A=1$ in (1), and obtain

$$
\left[D^{2}+\left(1+\frac{c}{x}\right) D+\frac{c-a}{x}\right] Y=0
$$

Again, we plug in (2) into this last equation, to obtain

$$
\sum_{n=-\infty}^{\infty}[(n+s)(n+s+1)-c(n+s)] a_{n} x^{-n-s-2}+\sum_{n=-\infty}^{\infty}[-(n+s)+c-a] a_{n} x^{-n-s-1}=0
$$

which gives us, with $n \rightarrow n-1$ in the first summation, that

$$
(n-1+s)(n+s-c) a_{n-1}-(n+s-c+a) a_{n}=0
$$

Letting $n=0$, we find that $s=c-a$. Putting this into the last formula, we have

$$
a_{n}=\frac{(n-1+c-a)(n-a)}{n} a_{n-1}
$$

which gives

$$
a_{n}=\frac{\Gamma(n+c-a) \Gamma(n+1-a)}{n!\Gamma(c-a) \Gamma(1-a)} a_{n-1}
$$

Thus, the second solution is

$$
y_{2}(x)=x^{a-c} e^{x} \sum_{n=0}^{\infty} \frac{\Gamma(n+c-a) \Gamma(n+1-a)}{n!} x^{-n}
$$

The general solution is

$$
\mathrm{y}(\mathrm{x})=\mathrm{C}_{1} \mathrm{x}^{-a} \sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma(n+a) \Gamma(n+1+a-c)}{n!} \mathrm{x}^{-n}+\mathrm{C}_{2} \mathrm{x}^{a-c} \mathrm{e}^{x} \sum_{n=0}^{\infty} \frac{\Gamma(n+c-a) \Gamma(n+1-a)}{n!} \mathrm{x}^{-n}
$$

where C_{1} and C_{2} are arbitrary constants. Note that series for both of the solutions are asymptotic series, they converge nowhere.
(b) Since $x=\infty$ is a regular singular point, we directly plug in the series (2) into the ODE in question to obtain

$$
\sum_{n=-\infty}^{\infty}(n+s)(n+s+1-c) a_{n} x^{-n-s-1}+\sum_{n=-\infty}^{\infty}[-(n+s)(n+s+1)+(a+b+1)(n+s)-a b] a_{n} x^{-n-s}=0
$$

After making $n \rightarrow n-1$ in the first summation, we obtain

$$
(n+s-a)(n+s-b) a_{n}=(n-1+s)(n+s-c) a_{n-1}
$$

Letting $n=0$, we find that either $s=a$, or $s=b$. Rewriting the above formula

$$
a_{n}=\frac{(n-1+s)(n+s-c)}{(n+s-a)(n+s-b)} a_{n-1}
$$

which gives

$$
a_{n}=\frac{\Gamma(n+s) \Gamma(n+1+s-c)}{\Gamma(n+1+s-a) \Gamma(n+1+s-b)} \frac{\Gamma(1+s-a) \Gamma(1+s-b)}{\Gamma(s) \Gamma(1+s-c)} a_{0}
$$

Thus the general solution is

$$
\mathrm{y}=\mathrm{C}_{1} x^{-a} \sum_{n=0}^{\infty} \frac{\Gamma(n+a) \Gamma(n+1+a-c)}{n!\Gamma(n+1+a-b)} x^{-n}+\mathrm{C}_{2} x^{-b} \sum_{n=0}^{\infty} \frac{\Gamma(n+b) \Gamma(n+1+b-c)}{n!\Gamma(n+1+b-a)} x^{-n}
$$

where C_{1} and C_{2} are arbitrary constants. Note that those series are convergent for $|x|>1$.
(c) Since $x=\infty$ is an irregular singular point of rank 3, we seek a coordinate transformation of the form

$$
y=e^{A_{1} x^{3}+A_{2} x^{2}+A_{3} x} Y
$$

which will transform the ODE into a form in which the coeefficent of Y does not have a pole of order higher than $(k+2)=5$. In other words, after transformation the quantity $\frac{1}{t^{4}} d\left(\frac{1}{t}\right)$ should not have a pole of order higher than 5 , which means $d\left(\frac{1}{t}\right)$ should not have any poles of order higher than 1 at $t=0$. The ODE for Y is

$$
\begin{aligned}
& {\left[\left(D+3 x^{2} A_{1}+2 x A_{2}+A_{3}\right)^{2}-x^{4}+\frac{3}{16} x^{-2}\right] Y=0} \\
& \Rightarrow \\
& \left\{D^{2}+\left[6 x^{2} A_{1}+4 x A_{2}+2 A_{3}\right] D+\left[\left(9 A_{1}^{2}-1\right) x^{4}+12 A_{1} A_{2} x^{3}+\left(3 A_{1} A_{3}+4 A_{2}^{2}\right) x^{2}+\left(4 A_{2} A_{3}+6 A_{1}\right) x+\left(A_{3}^{2}+2 A_{2}\right)+\right.\right.
\end{aligned}
$$

We see that we need to do is to eliminate the x^{4}, x^{3}, x^{2} terms in the coeefficient of Y. This can easily be done by letting $9 A_{1}^{2}-1=0, A_{2}=A_{3}=0$. Hence there are two cases, namely $A_{1}= \pm \frac{1}{3}$.
Let's first analyze $A_{1}=\frac{1}{3}$. Then indeed the ODE becomes

$$
\left[D^{2}+2 x^{2} D+2 x+\frac{3}{16} x^{-2}\right] Y=0
$$

which has $d\left(\frac{1}{t}\right)=2 \frac{1}{t}+\frac{3}{16} t^{2}$. This last quantity has no poles of order higher than 1 , verifying our earlier remark.
Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

$$
\sum_{n=-\infty}^{\infty} \underbrace{\left[(n+s)(n+s+1)+\frac{3}{16}\right.}_{\left(n+s+\frac{1}{4}\right)\left(n+s+\frac{3}{4}\right)}] a_{n} x^{-n-s-2}+\sum_{n=-\infty}^{\infty}[-2(n+s)+2] a_{n} x^{-n-s+1}=0
$$

Making $n \rightarrow n-3$ in the first summation, we obtain

$$
2(n+s-1) a_{n}+\left(n-3+s+\frac{1}{4}\right)\left(n-3+s+\frac{3}{4}\right) a_{n-3}=0
$$

Letting $n=0$ gives that $s=1$. Using this, we rewrite the above formula with $n=3 m$, we obtain

$$
a_{3 m}=\frac{3\left(m-\frac{7}{12}\right)\left(m-\frac{5}{12}\right)}{2 m} a_{3(m-1)}
$$

Thus the one of the solutions which is valid for $|x| \gg 1$ is

$$
\mathrm{y}_{1}(\mathrm{x})=\mathrm{x}^{-1} \mathrm{e}^{\frac{1}{3} x^{3}} \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} \frac{\Gamma\left(n+\frac{5}{12}\right) \Gamma\left(n+\frac{7}{12}\right)}{n!} \mathrm{x}^{-3 n}
$$

For the case when we take $A_{1}=-\frac{1}{3}$, our ODE is

$$
\left[D^{2}-2 x^{2} D-2 x+\frac{3}{16} x^{-2}\right] Y=0
$$

Plugging in (2) into the ODE. This gives us

$$
\sum_{n=-\infty}^{\infty} \underbrace{\left[(n+s)(n+s+1)+\frac{3}{16}\right]}_{\left(n+s+\frac{1}{4}\right)\left(n+s+\frac{3}{4}\right)}] a_{n} x^{-n-s-2}+\sum_{n=-\infty}^{\infty}[2(n+s)-2] a_{n} x^{-n-s+1}=0
$$

Making $n \rightarrow n-3$ in the first summation, we obtain

$$
2(n+s-1) a_{n}+\left(n-3+s+\frac{1}{4}\right)\left(n-3+s+\frac{3}{4}\right) a_{n-3}=0
$$

Letting $n=0$ gives that $s=1$. Using this and rewriting the above formula with $n=3 m$, we obtain

$$
a_{3 m}=-\frac{3\left(m-\frac{7}{12}\right)\left(m-\frac{5}{12}\right)}{2 m} a_{3(m-1)}
$$

Thus the second solution which is valid for $|x| \gg 1$ is

$$
\mathrm{y}_{2}(\mathrm{x})=\mathrm{x}^{-1} \mathrm{e}^{-\frac{1}{3} x^{3}} \sum_{n=0}^{\infty}\left(-\frac{3}{2}\right)^{n} \frac{\Gamma\left(n+\frac{5}{12}\right) \Gamma\left(n+\frac{7}{12}\right)}{n!} \mathrm{x}^{-3 n}
$$

The general solution is a linear combination of those two solutions. Note that both series are convergent nowhere.
(d) Since $x=\infty$ is an irregular singular point of rank 2, we seek a coordinate transformation of the form

$$
y=e^{A_{1} x^{2}+A_{2} x} Y
$$

which will transform the ODE into a form in which the coeefficent of Y does not have a pole of order higher than $(k+2)=4$. In other words, after transformation
 $d\left(\frac{1}{t}\right)$ should not have any poles at $t=0$. The ODE for Y is

$$
\left[\left(D+2 x A_{1}+A_{2}\right)^{2}+x^{2}+\frac{3}{16} x^{-2}\right] Y=0
$$

or

$$
\left[D^{2}+4 x A_{1} D+2 A_{1}+4 x^{2} A_{1}^{2}+4 x A_{1} A_{2}+A_{2}^{2}+x^{2}+\frac{3}{16} x^{-2}\right] Y=0
$$

We need to do is to eliminate the x^{2} and x terms in the coefficient of Y. This can easily be done by letting $4 A_{1}^{2}+1=0, A_{2}=0$. Let's choose $A_{1}= \pm \frac{1}{2} i, A_{2}=0$. Then indeed the ODE becomes

$$
\left[D^{2} \pm 2 x i D \pm i+\frac{3}{16} x^{-2}\right] Y=0
$$

which has $d\left(\frac{1}{t}\right)= \pm i+\frac{3}{16} t^{2}$. This last quantity has no poles, as we wished.
Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

$$
\sum_{n=-\infty}^{\infty}\left[(n+s)(n+s+1)+\frac{3}{16}\right] a_{n} x^{-n-s-2} \pm i \sum_{n=-\infty}^{\infty}[-2(n+s)+1] a_{n} x^{-n-s}=0
$$

Making $n \rightarrow n-2$ in the first summation, we obtain

$$
\pm i a_{n}(-2(n+s)+1)+\left(n-2+s+\frac{1}{4}\right)\left(n-2+s+\frac{3}{4}\right) a_{n-2}=0
$$

Letting $n=0$ gives that $s=\frac{1}{2}$ (in both cases). Rewriting the above formula, we have

$$
a_{n}= \pm i \frac{\left(n-\frac{5}{4}\right)\left(n-\frac{3}{4}\right)}{2 n} a_{n-2}
$$

With $n=2 m$, the above formula is

$$
a_{2 m}= \pm i \frac{\left(m-\frac{5}{8}\right)\left(m-\frac{3}{8}\right)}{m} a_{2(m-1)}
$$

Thus the general solution which is valid for $|x| \gg 1$ is
$y=C_{1} x^{-\frac{1}{2}} e^{\frac{1}{2} i x^{2}} \sum_{n=0}^{\infty}(i)^{-n} \frac{\Gamma\left(n+\frac{3}{8}\right) \Gamma\left(n+\frac{5}{8}\right)}{n!} x^{-2 n}+C_{2} x^{-\frac{1}{2}} e^{-\frac{1}{2} i x^{2}} \sum_{n=0}^{\infty}(i)^{n} \frac{\Gamma\left(n+\frac{3}{8}\right) \Gamma\left(n+\frac{5}{8}\right)}{n!} x^{-2 n}$
where C_{1} and C_{2} are arbitrary constants. The second solution can also be obtained by taking the complex conjugate of the first solution. Note that both series converge nowhere.
(e) Since $x=\infty$ is an irregular singular point of rank 2, we seek a coordinate transformation of the form

$$
y=e^{A_{1} x^{2}+A_{2} x} Y
$$

which will transform the ODE into a form in which the coeefficent of Y does not have a pole of order higher than $(k+2)=4$. In other words, after transformation the quantity $\frac{1}{t^{4}} d\left(\frac{1}{t}\right)$ should not have a pole of order higher than 4 , which means $d\left(\frac{1}{t}\right)$ should not have any poles at $t=0$. The ODE for Y is

$$
\left[\left(D+2 x A_{1}+A_{2}\right)^{2}+\nu+\frac{1}{2}-\frac{1}{4} x^{2}\right] Y=0
$$

or

$$
\left[D^{2}+4 x A_{1} D+2 A_{1}+4 x^{2} A_{1}^{2}+4 x A_{1} A_{2}+A_{2}^{2}-\frac{1}{4} x^{2}\right] Y=0
$$

We see that the only thing we need to do is to eliminate the x^{2} and x terms in the coefficient of Y. This can easily be done by letting $4 A_{1}^{2}-\frac{1}{4}=0, A_{2}=0$.
Let's proceed with $A_{1}= \pm \frac{1}{4}$. Then indeed the ODE becomes

$$
\left[D^{2} \pm x D+\nu+\frac{1}{2} \pm \frac{1}{2}\right] Y=0
$$

which has $d\left(\frac{1}{t}\right)=\nu+\frac{1}{2} \pm \frac{1}{2}$. This last quantity has no poles, as we wished.
Now we proceed as in the earlier cases, thus we plug (2) into the ODE. This gives us

$$
\sum_{n=-\infty}^{\infty}(n+s)(n+s+1) a_{n} x^{-n-s-2}+\sum_{n=-\infty}^{\infty}\left[\mp(n+s)+\nu+\frac{1}{2} \pm \frac{1}{2}\right] a_{n} x^{-n-s}=0
$$

Making $n \rightarrow n-2$ in the first summation, we obtain

$$
\left(\mp(n+s)+\nu+\frac{1}{2} \pm \frac{1}{2}\right) a_{n}+(n-2+s)(n-1+s) a_{n-2}=0
$$

Letting $n=0$, we find that $s= \pm \nu+\frac{1}{2} \pm \frac{1}{2}$. Rewriting the above formula

$$
a_{n}=-\frac{(n-2+s)(n-1+s)}{\mp(n+s)+\nu+\frac{1}{2} \pm \frac{1}{2}} a_{n-2}
$$

With $n=2 m$, the above formula is

$$
a_{2 m}=-\frac{(2 m-2+s)(2 m-1+s)}{\mp(2 m+s)+\nu+\frac{1}{2} \pm \frac{1}{2}} a_{2(m-1)}=-2 \frac{\left(m+\frac{s-2}{2}\right)\left(m+\frac{s-1}{2}\right)}{\left[\mp m+\frac{1}{2}\left(\mp s+\nu+\frac{1}{2} \pm \frac{1}{2}\right)\right]} a_{2(m-1)}
$$

Hence for upper $(+)$ case: $s=\nu+1$, and

$$
a_{2 m}=2 \frac{\left(m+\frac{\nu-1}{2}\right)\left(m+\frac{\nu}{2}\right)}{m} a_{2(m-1)}=2^{m} \frac{\Gamma\left(m+\frac{\nu+1}{2}\right) \Gamma\left(m+\frac{\nu+2}{2}\right)}{m!\Gamma\left(\frac{\nu-1}{2}\right) \Gamma\left(\frac{\nu}{2}\right)} a_{0}
$$

and for the lower $(-)$ case: $s=-\nu$, and

$$
a_{2 m}=-2 \frac{\left(m-\frac{\nu+2}{2}\right)\left(m-\frac{\nu+1}{2}\right)}{m+\frac{1}{2}} a_{2(m-1)}=(-2)^{m} \frac{\Gamma\left(m-\frac{\nu}{2}\right) \Gamma\left(m-\frac{\nu-1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(m+\frac{3}{2}\right) \Gamma\left(-\frac{\nu}{2}\right) \Gamma\left(\frac{-\nu+1}{2}\right)} a_{0}
$$

Thus the general solution which is valid for $|x| \gg 1$ is
$y=C_{1} e^{\frac{1}{4} x^{2}} x^{-\nu-1} \sum_{n=0}^{\infty} 2^{n} \frac{\Gamma\left(n+\frac{\nu+1}{2}\right) \Gamma\left(n+\frac{\nu+2}{2}\right)}{n!} x^{-2 n}+C_{2} e^{-\frac{1}{4} x^{2}} x^{\nu} \sum_{n=0}^{\infty}(-2)^{n} \frac{\Gamma\left(n-\frac{\nu}{2}\right) \Gamma\left(n-\frac{\nu-1}{2}\right)}{n!} x^{-2 n}$
where C_{1} and C_{2} are arbitrary constants. Note that both series are asymptotic series, they converge nowhere.
2. (Chapter 7,Problem 1) Show that the Wronskian of $y_{W K B}^{+}$and $y_{W K B}^{-}$given by (7.5) is a constant.

Solution:

The Wronskian is defined to be

$$
W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

where, in our case,

$$
\begin{align*}
& y_{1}=y_{W K B}^{+}=\frac{1}{\sqrt{p(x)}} e^{i \int p(x) d x} \tag{3}\\
& y_{2}=y_{W K B}^{-}=\frac{1}{\sqrt{p(x)}} e^{-i \int p(x) d x}
\end{align*}
$$

We differentiate those to find

$$
\left(y_{W K B}^{ \pm}\right)^{\prime}=\left[\pm i p(x)-\frac{1}{2 p(x)}\right] y_{W K B}^{ \pm}
$$

Thus

$$
\begin{aligned}
W & =y_{W K B}^{+} y_{W K B}^{-}\left[-i p(x)-\frac{1}{2 p(x)}\right]-\left[i p(x)-\frac{1}{2 p(x)}\right] y_{W K B}^{+} y_{W K B}^{-} \\
& =-2 i p(x) y_{W K B}^{+} y_{W K B}^{-} \\
& =-2 i p(x) \frac{1}{\sqrt{p(x)}} e^{i \int p(x) d x} \frac{1}{\sqrt{p(x)}} e^{-i \int p(x) d x}=-2 i=\mathrm{constant}
\end{aligned}
$$

3. The WKB solutions (3) can also be derived by putting

$$
y=e^{i S}
$$

(a) Substitute WKB solutions into $y^{\prime \prime}+p^{2} y=0$ and show that

$$
i S^{\prime \prime}-\left(S^{\prime}\right)^{2}+p^{2}=0
$$

which is a nonlinear ODE.
(b) If $p(x)$ is of the form

$$
p(x)=\lambda P(x)
$$

give a reason which suggests that we may drop the term $i S^{\prime \prime}$ in the equation above and obtain

$$
\left(S^{\prime}\right)^{2}-p^{2}=0
$$

This equation is known as Hamilton-Jacobi equation.
(c) Show that the Hamilton-Jacobi equation yields the solutions $e^{ \pm i \int p(x) d x}$.
(d) Obtain the additional factor $\frac{1}{\sqrt{p(x)}}$ in the WKB solutions by going to the next-order approximation.
Solution:
(a)

$$
\begin{aligned}
y & =e^{i S} \\
y^{\prime} & =i S^{\prime} e^{i S} \\
y^{\prime \prime} & =i S^{\prime \prime} e^{i S}-\left(S^{\prime}\right)^{2} e^{i S}
\end{aligned}
$$

Plugging those in, we obtain

$$
i S^{\prime \prime} e^{i S}-\left(S^{\prime}\right)^{2} e^{i S}+p^{2} e^{i S}=\left[i S^{\prime \prime}-\left(S^{\prime}\right)^{2}+p^{2}\right] e^{i S}=0
$$

Hence, if $y \neq 0$,

$$
\begin{equation*}
i S^{\prime \prime}-\left(S^{\prime}\right)^{2}+p^{2}=0 \tag{4}
\end{equation*}
$$

(b) We don't know what S is, in the first place. So how can one show that the term $i S^{\prime \prime}$ can be dropped, that is, it is negligible.The strategy is that we neglect the term $i S^{\prime \prime}$, and solve for S. After then, we turn back, and check if we did something sensible with neglecting $i S^{\prime \prime}$.
Solving

$$
\left(S^{\prime}\right)^{2}-\lambda^{2} P^{2}=0
$$

we obtain

$$
\begin{equation*}
S= \pm \lambda \int P(x) d x=O(\lambda) \tag{5}
\end{equation*}
$$

Hence

$$
\begin{aligned}
S^{\prime} & =\lambda P(x) \\
S^{\prime \prime} & =\lambda P^{\prime}(x)
\end{aligned}
$$

Thus

$$
\underbrace{\frac{1}{\lambda}\left(i \frac{1}{\lambda} S\right)^{\prime \prime}}_{O\left(\frac{1}{\lambda}\right)}-\underbrace{\left(\frac{1}{\lambda} S^{\prime}\right)^{2}}_{O(1)}+\underbrace{P^{2}}_{O(1)}=0
$$

Hence, the solution S given by (5) almost satisfies the given equation. So the term $i S^{\prime \prime}$ is negligible-compared with $\left(S^{\prime}\right)^{2}$.
(c) Putting (5) into $y=e^{i S}$, we obtian $y=e^{ \pm i \int p(x) d x}$.
(d) Let

$$
S= \pm \lambda \int P(x) d x+Q(x)
$$

where $Q(x)$ is the next-order correction to S.Then

$$
\begin{aligned}
S^{\prime} & = \pm \lambda P(x)+Q^{\prime}(x) \\
S^{\prime \prime} & = \pm \lambda P^{\prime}(x)+Q^{\prime \prime}(x)
\end{aligned}
$$

Plugging those into (4), we obtain

$$
-\lambda P^{\prime}-\lambda^{2} P^{2}-2 i \lambda P Q^{\prime}+\left(Q^{\prime}\right)^{2}+\lambda^{2} P^{2}=0
$$

or

$$
P^{\prime}+2 i P Q^{\prime}=\frac{1}{\lambda}\left(Q^{\prime}\right)^{2}
$$

Neglecting the right-hand side of the last equation, we obtain

$$
Q^{\prime}=i \frac{1}{2} \frac{P^{\prime}}{P}
$$

This integrates to give us

$$
Q=i \ln P
$$

Thus

$$
\begin{aligned}
y & =e^{i S}=e^{i\left[\pm \lambda \int P(x) d x+Q(x)\right]} \\
& =e^{ \pm i \int p(x) d x-\frac{1}{2} \ln p} \\
& =\frac{1}{\sqrt{p(x)}} e^{ \pm i \int p(x) d x}
\end{aligned}
$$

Q.E.D.

