Math 18.305 Fall 2004/05

Assignment 6: Boundary Layers
Provided by Mustafa Sabri Kilic

1. Solve approximately the following two equations
(a) $\epsilon y^{\prime \prime}+(1+x)^{2} y^{\prime}+y=0,0<x<1$, with $y(0)=0$ and $y(1)=2$.
(b) $\epsilon y^{\prime \prime}-\left(1+x^{2}\right) y^{\prime}+y=0,0<x<1$, with $y(0)=0$ and $y(1)=2$

Solutions:

1. Solve approximately the following two equations

In both problems, the highest derivative is multiplied by a perturbation parameter ϵ, and hence the problems are solved using boundary layer techniques.
(a) Since $a(x)=(1+x)^{2}>0$, the rapidly varying solution is decreasing and thus the boundary layer is at $x=0$, and it has width ϵ.

We can find the solution outside the boundary layer by solving

$$
(1+x)^{2} y_{\text {out }}^{\prime}+y_{\text {out }}=0
$$

which gives

$$
y_{\text {out }}=C_{1} e^{\frac{1}{1+x}}
$$

where C_{1} is a constant. Since the rapidly varying function is negligible at $x=1$, we can use the boundary condition at $x=0$ to determine the value of C_{1} :

$$
y_{\text {out }}(1)=C_{1} e^{1 / 2}=2
$$

thus $C_{1}=2 e^{-1 / 2}$. To find the behaviour of the rapidly varying function near $x=0$, we look at

$$
\epsilon y^{\prime \prime}+(1+0)^{2} y^{\prime}=0
$$

which gives

$$
y_{r} \approx C_{2} e^{-x / \epsilon}
$$

Using the boundary condition at $x=0$, i.e

$$
C_{2}+y_{\text {out }}(0)=0
$$

we find $C_{2}=-2 e^{-1 / 2}$. Hence the solution is

$$
y_{\text {uniform }}=2 e^{-1 / 2} e^{\frac{1}{1+x}}-2 e^{-1 / 2} e^{-x / \epsilon}
$$

1. (b) Since $a(x)=-\left(1+x^{2}\right)<0$, the rapidly varying solution is increasing and thus the boundary layer is at $x=1$, and it has width ϵ.

We can find the solution outside the boundary layer by solving

$$
-\left(1+x^{2}\right) y_{\text {out }}^{\prime}+y_{\text {out }}=0
$$

which gives

$$
y_{\text {out }}=C_{1} e^{\tan ^{-1} x}
$$

where C_{1} is a constant. Since the rapidly varying function is negligible at $x=0$, we can use the boundary condition at $x=0$ to determine the value of C_{1} :

$$
y_{\text {out }}(0)=C_{1} e^{0}=0
$$

thus $C_{1}=0$. Hence $y_{\text {out }} \equiv 0$. Therefore the solution is approximately zero outside the boundary layer.
To find the behaviour of the rapidly varying function near $x=1$, we look at

$$
\epsilon y^{\prime \prime}-\left(1+1^{2}\right) y^{\prime}=0
$$

which gives

$$
y_{r} \approx C_{2} e^{2(x-1) / \epsilon}
$$

Using the boundary condition at $x=1$, we find $C_{2}=2$. Hence one may think that the solution can be approximated by

$$
\begin{equation*}
y_{\text {uniform }}=y_{r}+y_{\text {out }}=y_{r}=2 e^{2(x-1) / \epsilon} \tag{1}
\end{equation*}
$$

That is correct in that the absolute error between the exact solution and $y_{u n i f o r m}$ given by (1) will be small. But since the solution itself is also "small", the relative error may be large. In such a case, it may be useful to calculate higher order approximations to y_{r} which, in the present case, equals $y_{\text {uniform }}$.
To calculate a better approximation, we let

$$
y_{r}=e^{\frac{1}{\epsilon} \int_{1}^{x}\left(1+x^{2}\right) d x} v(x)=e^{\frac{1}{\epsilon}\left(x+\frac{1}{3} x^{3}-\frac{4}{3}\right) d x} v(x)
$$

where $v(x)$ is expected not to be rapidly varying. Substituting this into the differential equation, we obtain

$$
v^{\prime}-\frac{2 x+1}{1+x^{2}} v=\epsilon v^{\prime \prime}
$$

Neglecting the right hand side, we find

$$
\ln v=-\ln \left(1+x^{2}\right)-\tan ^{-1} x+c
$$

or

$$
v(x)=\frac{2 C}{1+x^{2}} e^{-\left(\tan ^{-1} x-\frac{\pi}{4}\right)}
$$

where c and C are some constants. Using the boundary condition at $x=1$, we see that $C=2$. Hence we find

$$
y_{\text {uniform }}=y_{\text {out }}+y_{r}=y_{r}=\frac{4}{1+x^{2}} e^{-\left(\tan ^{-1} x-\frac{\pi}{4}\right)} e^{\frac{1}{\epsilon}\left(x+\frac{1}{3} x^{3}-\frac{4}{3}\right) d x}
$$

which is more accurate than (1).

