Lecture 12

The Laplace Method

We begin with integrals of the form

$$
\begin{equation*}
I(\lambda)=\int_{a}^{b} e^{-\lambda v(x)} h(x) d x, \tag{8.8}
\end{equation*}
$$

where $v(x)$ and $h(x)$ are independent of the parameter λ. The variable of integration x is real. We shall show how to find the asymptotic form of $I(\lambda)$ as $\lambda \rightarrow \infty$.

We note that the integrand in the integral above is maximum when v is minimum. Indeed, let x_{0} be the point inside the interval $[a, b]$ at which $v(x)$ is minimum. Then the integrand at x_{0} is exponentially larger than that at any other points in the region of integration. As a result, to evaluate the integral of (8.8) approximately, it is crucial to approximate $v(x)$ and $h(x)$ accurately near x. This also means that we need not be concerned with the integrand away from x_{0}. This is because the dominant contribution to the integral comes from a very small region near x_{0}.

Problem for the Reader:
Find the leading asymptotic term of the integral

$$
\begin{equation*}
I(\lambda)=\int_{0}^{\infty} \exp \left(-\lambda \sinh ^{2} x\right) d x, \lambda \gg 1 . \tag{8.9}
\end{equation*}
$$

Answer
Comparing (8.9) with (8.8), we make the identification

$$
v(x)=\sinh ^{2} x,
$$

and

$$
h(x)=1 .
$$

The function $\sinh ^{2} x$ is always positive, and is minimum at $x=0$. Thus it suffices to represent $\sinh ^{2} x$ accurately near the origin, where

$$
\sinh ^{2} x \approx x^{2}
$$

We therefore have

$$
I(\lambda) \approx \int_{-\infty}^{\infty} e^{-\lambda x^{2}} d x
$$

Let

$$
\rho \equiv \sqrt{\lambda} x
$$

and

$$
d x=d \rho / \sqrt{\lambda} .
$$

With this change of variable the exponent is independent of λ. Then we have

$$
\begin{equation*}
I(\lambda) \approx \frac{1}{\sqrt{\lambda}} \int_{-\infty}^{\infty} e^{-\rho^{2}} d \rho=\sqrt{\frac{\pi}{\lambda}} . \tag{8.10}
\end{equation*}
$$

In the above, we have made use of the fact that the Gaussian integral $\int_{-\infty}^{\infty} e^{-\rho^{2}} d \rho$ is equal to $\sqrt{\pi}$, as is given in Appendix A of this chapter.

If one makes a small mistake in an approximation, the answer one gets can be far off the mark. Thus it is often useful to have a quick answer. We shall show how to get a rough estimate of the asymptotic form of the integral $I(\lambda)$ without going through a great deal of calculations performed.

The integrand of $I(\lambda)$ drops by a factor of e when

$$
\lambda x^{2}=1,
$$

or

$$
x=1 / \sqrt{\lambda} .
$$

Thus $1 / \sqrt{\lambda}$ is roughly the width of the region which gives the dominant contributions to the integral. The width $1 / \sqrt{\lambda}$ of the region of dominant contribution is the same factor relating $d x$ with $d t$. We shall say that the scale of x is $1 / \sqrt{\lambda}$.

The integral $I(\lambda)$ is roughly equal to its integrand at $x=0$ times the width of the region of

Asymptotic Expansions of Integrals
dominant contributions. Since the integrand at $x=0$ is equal to unity, $I(\lambda)$ is of the order of $1 / \sqrt{\lambda}$. This produces the answer (8.10) up to a multiplicative constant. We express this estimate as

$$
I(\lambda)=O(1 / \sqrt{\lambda}) .
$$

For certain problems such an estimate is already adequate for the purpose. If so, we are spared the chore of a tedious calculation. The factor missing in the estimate is the multiplicative constant $\sqrt{\pi}$, which is the value of the Gaussian integral.

Homework problems in Chapter 8 due Nov 1,04:
Problem 2 (The integrals are given on p .218);
Problem 3;
Find also the entire asymptotic series of each of the integrals in Problem 3.

