Assignment 8 Solutions: The Two-scale Method

Provided by Mustafa Sabri Kilic

1. Solve with the two-scale method

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\epsilon\left(1+y^{2}\right) \frac{d y}{d t}+y=0, \epsilon \ll 1 \tag{1}
\end{equation*}
$$

with $y(0)=0, \dot{y}(0)=1$.
For what values of t do you expect the approximate solution to be good. Can you explain why the solution you obtained satisfies

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\epsilon \frac{d y}{d t}+y=0 \tag{2}
\end{equation*}
$$

as $t \rightarrow \infty$.
2. Apply the two-scale method to the problem

$$
\begin{equation*}
\ddot{x}+x=\epsilon\left(\dot{x}-\frac{1}{3} \dot{x}^{3}\right) \tag{3}
\end{equation*}
$$

with $x(0)=1$ and $x(0)=a$.
Can you explain why the solution always approaches a limit cycle as $t \rightarrow \infty$?

Solutions:

1. A regular perturbation analysis gives that it is convenient to use $\tau=\epsilon t$ as a second scale in the treatment of the problem. We then remember

$$
\begin{align*}
\frac{d}{d t} & =\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau} \\
\frac{d^{2}}{d t^{2}} & =\frac{\partial^{2}}{\partial t^{2}}+2 \epsilon \frac{\partial^{2}}{\partial t \partial \tau}+\epsilon^{2} \frac{\partial^{2}}{\partial \tau^{2}} \tag{4}
\end{align*}
$$

Pluggin' in these identities into (1), along with

$$
\begin{equation*}
y=y_{0}+\epsilon y_{1}+\ldots \tag{5}
\end{equation*}
$$

where the quantities are considered functions of both the variables t and τ, we obtain
$\left[\frac{\partial^{2}}{\partial t^{2}}+2 \epsilon \frac{\partial^{2}}{\partial t \partial \tau}+\epsilon^{2} \frac{\partial^{2}}{\partial \tau^{2}}+1\right]\left(y_{0}+\epsilon y_{1}+\ldots\right)=-\epsilon\left[1+\left(y_{0}+\epsilon y_{1}+\ldots\right)^{2}\right]\left(\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau}\right)\left(y_{0}+\epsilon y_{1}+\ldots\right)$
The initial conditions translate into

$$
\begin{aligned}
\left.\left(y_{0}+\epsilon y_{1}+\ldots\right)\right|_{(0,0)} & =0, i=0,1,2, . . \\
\left.\left(\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau}\right)\left(y_{0}+\epsilon y_{1}+\ldots\right)\right|_{(0,0)} & =1
\end{aligned}
$$

which gives

$$
\begin{gathered}
y_{n}(0,0)=0, \text { for all } n=0,1,2, . . \\
\frac{\partial}{\partial t} y_{0}(0,0)=1 \\
\left.\left(\frac{\partial y_{n}}{\partial \tau}+\frac{\partial y_{n+1}}{\partial t}\right)\right|_{(0,0)}=0, \text { for all } n=0,1,2, . .
\end{gathered}
$$

We now look at the order 1 terms to see

$$
\frac{\partial^{2}}{\partial t^{2}} y_{0}+y_{0}=0
$$

which implies

$$
y_{0}=B(\tau) e^{i t}+C(\tau) e^{-i t}
$$

where B and C are arbitrary functions. Making use of the initial conditions, we see that we can write

$$
\begin{equation*}
y_{0}=A(\tau) e^{i t}+A^{*}(\tau) e^{-i t} \tag{6}
\end{equation*}
$$

with $A(0)=\frac{1}{2 i}$. We next examine the order ϵ terms-

$$
\begin{aligned}
\left(\frac{\partial^{2}}{\partial t^{2}}+1\right) y_{1} & =-2 \frac{\partial^{2}}{\partial t \partial \tau} y_{0}-\left(1+y_{0}^{2}\right) \frac{\partial}{\partial t} y_{0} \\
& =-2 i A^{\prime} e^{i t}+2 i A^{* \prime} e^{-i t}-\left[1+\left(A e^{i t}+A^{*} e^{-i t}\right)^{2}\right]\left(i A e^{i t}-i A^{*} e^{-i t}\right) \\
& =-2 i A^{\prime} e^{i t}+2 i A^{* \prime} e^{-i t}-i\left[1+\left(A^{2} e^{2 i t}+2 A A^{*}+A^{* 2} e^{-2 i t}\right)\right]\left(A e^{i t}-A^{*} e^{-i t}\right)
\end{aligned}
$$

The secular terms on the right hand side of this last equality are seen to be

$$
-i\left(2 A^{\prime}+A+A^{2} A^{*}\right) e^{i t}+i\left(2 A^{* \prime}+A^{*}+A A^{* 2}\right) e^{-i t}
$$

We observe that the second summand is just the complex conjugate of the first, hence to eliminate all the secular terms it suffices to choose A such that

$$
2 A^{\prime}+A+A^{2} A^{*}=0
$$

To solve this, we let $A=R e^{i \theta}$, which leads to

$$
2\left(R^{\prime}+i \theta^{\prime} R\right)+R+R^{3}=0
$$

Equating the real and imaginary parts to zero,

$$
\begin{aligned}
\theta^{\prime} & =0 \\
2 R^{\prime}+R+R^{3} & =0
\end{aligned}
$$

Since $A(0)=1 / 2 i$, we have $\theta(0)=-\pi / 2$, which implies $\theta(\tau)=-\pi / 2$ for all τ. To solve the differential equation for R, we let

$$
U=R^{2}
$$

(this is not necessary, but it makes the algebra simpler), then

$$
U^{\prime}=2 R R^{\prime}=-\left(R^{2}+R^{4}\right)=-\left(U+U^{2}\right)
$$

$$
\frac{U^{\prime}}{U(U+1)}=\frac{U^{\prime}}{U}-\frac{U^{\prime}}{U+1}=-1
$$

which gives, by integration,

$$
\frac{U}{U+1}=c e^{-\tau}
$$

Making use of the initial condition $U(0)=R^{2}(0)=1 / 4$, we find $U=\frac{1}{5 e^{\tau}-1}$, hence

$$
A=\frac{1}{\sqrt{5 e^{\tau}-1}}
$$

Thus, from (6)

$$
y \approx y_{0}=\frac{2 \sin t}{\sqrt{5 e^{\epsilon t}-1}}
$$

The solution obtained by the two-scale method is a good approximation for times of $O(1 / \epsilon)$, as we may have secular terms of order $\epsilon^{n} t^{n-1}$ from the contribution of y_{n} to the series (5). However, for this particular example, further analysis(similar to the one on pp328 of the textbook) shows that the obtained solution is a good approximation for all times.

We observe that $y \rightarrow 0$ as $\tau \rightarrow \infty$, hence the y^{2} term in the differential equation becomes much smaller than the other terms. That is why the solution y_{0} satisfies the differential equation (2) as $\tau \rightarrow \infty$.
2. A regular perturbation analysis of the problem shows the existence of secular terms in the form $\epsilon e^{i t}$, therefore it is appropriate to use $\tau=\epsilon t$ as a second time scale for this problem. Using the identities (4), and

$$
x=x_{0}+\epsilon x_{1}+\ldots
$$

we obtain

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{2}}+2 \epsilon \frac{\partial^{2}}{\partial t \partial \tau}+\epsilon^{2} \frac{\partial^{2}}{\partial \tau^{2}}+1\right]\left(x_{0}+\epsilon x_{1}+\ldots\right)=\epsilon\left[\left(\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau}\right)\left(x_{0}+\epsilon x_{1}+\ldots\right)-\frac{1}{3}\left(\left(\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau}\right)\left(x_{0}+\epsilon x_{1}+\ldots\right)\right)^{3}\right] \tag{7}
\end{equation*}
$$

The initial conditions translate into

$$
\begin{aligned}
\left.\left(x_{0}+\epsilon x_{1}+\ldots\right)\right|_{(0,0)} & =0, i=0,1,2, . . \\
\left.\left(\frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial \tau}\right)\left(x_{0}+\epsilon x_{1}+\ldots\right)\right|_{(0,0)} & =a
\end{aligned}
$$

which gives

$$
\begin{gathered}
x_{n}(0,0)=0, \text { for all } n=0,1,2, . . \\
\frac{\partial}{\partial t} x_{0}(0,0)=1 \\
\left.\left(\frac{\partial x_{n}}{\partial \tau}+\frac{\partial x_{n+1}}{\partial t}\right)\right|_{(0,0)}=0, \text { for all } n=0,1,2, . .
\end{gathered}
$$

We now look at the order 1 terms to see

$$
\frac{\partial^{2}}{\partial t^{2}} x_{0}+x_{0}=0
$$

which implies

$$
x_{0}=B(\tau) e^{i t}+C(\tau) e^{-i t}
$$

where B and C are arbitrary functions. Making use of the fact that x_{0} can be chosen to be a real solution, we see that we can write

$$
\begin{equation*}
x_{0}=A(\tau) e^{i t}+A^{*}(\tau) e^{-i t} \tag{8}
\end{equation*}
$$

with $A(0)=\frac{a}{2 i}$. We next examine the $O(\epsilon)$ in the differential equation (7),

$$
\begin{aligned}
\left(\frac{\partial^{2}}{\partial t^{2}}+1\right) x_{1} & =-2 \frac{\partial^{2}}{\partial t \partial \tau} x_{0}+\left[\frac{\partial}{\partial t} x_{0}-\frac{1}{3}\left(\frac{\partial}{\partial t} x_{0}\right)^{3}\right] \\
& =-2 i A^{\prime} e^{i t}+2 i A^{* \prime} e^{-i t}+\left[\left(i A e^{i t}-i A^{*} e^{-i t}\right)-\frac{1}{3}\left(i A e^{i t}-i A^{*} e^{-i t}\right)^{3}\right] \\
& =-2 i A^{\prime} e^{i t}+2 i A^{* \prime} e^{-i t}+\left[i A e^{i t}-i A^{*} e^{-i t}+\frac{1}{3} i\left(A^{3} e^{3 i t}-3 A^{2} A^{*} e^{i t}+3 A A^{* 2} e^{-i t}-A^{* 3} e^{-}\right.\right.
\end{aligned}
$$

The secular terms on the right hand side are seen to be

$$
i\left(-2 A^{\prime}+A-A^{2} A^{*}\right) e^{i t}-i\left(-2 A^{* \prime}+A^{*}-A^{* 2} A\right) e^{-i t}
$$

We again see that the second summand is just the complex conjugate of the first, so to eliminate all the secular terms we only need to choose A such that

$$
-2 A^{\prime}+A-A^{2} A^{*}=0
$$

To solve this, we let $A=R e^{i \theta}$, which leads to

$$
-2\left(R^{\prime}+i \theta^{\prime} R\right)+R-R^{3}=0
$$

Equating the real and imaginary parts to zero,

$$
\begin{aligned}
\theta^{\prime} & =0 \\
-2 R^{\prime}+R-R^{3} & =0
\end{aligned}
$$

Since $A(0)=1 / 2$, we have $\theta(0)=-\pi / 2$, which implies $\theta(\tau)=-\pi / 2$ for all τ. To solve the differential equation for R, we let

$$
U=R^{2}
$$

(this is not necessary, but it makes the algebra simpler), then

$$
\begin{gathered}
U^{\prime}=2 R R^{\prime}=R^{2}-R^{4}=U-U^{2}=-U(U-1) \\
-\frac{U^{\prime}}{U(U-1)}=-\frac{U^{\prime}}{U}+\frac{U^{\prime}}{U-1}=1
\end{gathered}
$$

which gives, by integration,

$$
\frac{U-1}{U}=c e^{-\tau}
$$

Making use of the initial condition $U(0)=R^{2}(0)=a^{2} / 4$, we find

$$
U=\frac{a^{2}}{\left(1-e^{-\tau}\right) a^{2}+4 e^{-\tau}}
$$

and $A=\frac{a}{\sqrt{\left(1-e^{-\tau}\right) a^{2}+4 e^{-\tau}}}$, hence

$$
x \approx x_{0}=A(\tau) \frac{e^{i t}}{i}-A^{*}(\tau) \frac{e^{-i t}}{i}=\frac{2 a \sin t}{\sqrt{\left(1-e^{-\epsilon t}\right) a^{2}+4 e^{-\epsilon t}}}=\frac{2 a \sin t}{\sqrt{a^{2}+\left(4-a^{2}\right) e^{-\epsilon t}}}
$$

which is a good approximation to the actual solution for at least the times of order $\frac{1}{\epsilon}$. As is easily seen, the solution approaches to the limiting function $y=2 \sin t$, no matter what the value of the parameter a is, unless a is exactly zero.
From a physical point of view, this can be explained as follows. We rewrite the differential equation in the form

$$
\begin{equation*}
\ddot{x}+x=\epsilon \dot{x}\left(1-\frac{1}{3} \dot{x}^{2}\right) \tag{9}
\end{equation*}
$$

This models an oscillator with damping factor $\epsilon\left(1-\frac{1}{3} \dot{x}^{2}\right)$. Damping is positive or negative depending on the value of $|\dot{x}|$. A small solution will be damped positively, since $1-\frac{1}{3} \dot{x}^{2}$ will be positive. Similarly, a large solution will be damped negatively. In this case, a limiting solution, which attracts all the initial conditions, is natural to expect.

